Overview
Thank you for releasing the code!
Following the README, I fine-tuned DeiT-Small (DINO-pretrained) using the subset
data_selection/subsets/CIFAR10/Density_250_from_ActiveFT50.json
(i.e., 250 labelled images = 0.5 % of CIFAR-10).
However, I obtained Top-1 = 56.93 %, which is much lower than the 81.0 ± 1.2 % reported in the paper.
Reproduction commands
# -------- fine-tuning --------
python -m torch.distributed.launch --nproc_per_node=1 main.py \
--data-set CIFAR10SUBSET \
--subset_ids ../data_selection/subsets/CIFAR10/Density_250_from_ActiveFT50.json \
--resume dino_deitsmall16_pretrain.pth \
--output_dir Outputs/C10_250 \
--epochs 1000 \
--batch-size 512\
--lr 2.5e-4 \
--eval_interval 50 \
--clip-grad 2.0
# -------- evaluation --------
python main.py \
--data-set CIFAR10 \
--data-path data \
--batch-size 512 \
--resume Outputs/C10_250/best_checkpoint.pth \
--eval \
--save_metrics Outputs/C10_250/metrics.json