-
Notifications
You must be signed in to change notification settings - Fork 239
Description
I am trying to train a Chinese model of a conformer. When I train with 4 2080ti, there will be an error in the middle of the epoch: CUDA_ERROR_ILLEGAL_ADDRESS: an illegal memory access was encountered, and the time of occurrence is not fixed. This problem doesn't occur when I train with only one gpu. please help me
This is my environment:
tensorflow-gpu==2.7
tensorflow-text==2.7
tensorflow-io==0.23
Below is my config.yml configuration
speech_config:
sample_rate: 16000
frame_ms: 25
stride_ms: 10
num_feature_bins: 80
feature_type: log_mel_spectrogram
preemphasis: 0.97
normalize_signal: True
normalize_feature: True
normalize_per_frame: False
decoder_config:
vocabulary: /remote-home/jzhan/TensorFlowASR/vocabularies/AISHELL-1/AISHELL-1_10000.subwords
target_vocab_size: 10000
max_subword_length: 10
blank_at_zero: True
beam_width: 0
norm_score: True
corpus_files:
- /remote-home/jzhan/Datasets/AISHELL-1_test/train/transcripts.tsv
model_config:
name: conformer
encoder_subsampling:
type: conv2d
filters: 144
kernel_size: 3
strides: 2
encoder_positional_encoding: sinusoid
encoder_dmodel: 144
encoder_num_blocks: 16
encoder_head_size: 36
encoder_num_heads: 4
encoder_mha_type: relmha
encoder_kernel_size: 32
encoder_fc_factor: 0.5
encoder_dropout: 0.1
prediction_embed_dim: 320
prediction_embed_dropout: 0
prediction_num_rnns: 1
prediction_rnn_units: 320
prediction_rnn_type: lstm
prediction_rnn_implementation: 2
prediction_layer_norm: True
prediction_projection_units: 0
joint_dim: 320
prejoint_linear: True
joint_activation: tanh
joint_mode: add
learning_config:
train_dataset_config:
use_tf: True
augmentation_config:
feature_augment:
time_masking:
num_masks: 10
mask_factor: 100
p_upperbound: 0.05
freq_masking:
num_masks: 1
mask_factor: 27
data_paths:
- /remote-home/jzhan/Datasets/AISHELL-1/train/transcripts.tsv
tfrecords_dir: /remote-home/jzhan/Datasets/AISHELL-1/train/tfrecords
shuffle: True
cache: True
buffer_size: 100
drop_remainder: True
stage: train
eval_dataset_config:
use_tf: True
data_paths:
- /remote-home/jzhan/Datasets/AISHELL-1/test/transcripts.tsv
tfrecords_dir: /remote-home/jzhan/Datasets/AISHELL-1/test/tfrecords
shuffle: False
cache: True
buffer_size: 100
drop_remainder: True
stage: eval
test_dataset_config:
use_tf: True
data_paths:
- /remote-home/jzhan/Datasets/AISHELL-1/test/transcripts.tsv
tfrecords_dir: /remote-home/jzhan/Datasets/AISHELL-1/test/tfrecords
shuffle: False
cache: True
buffer_size: 100
drop_remainder: True
stage: test
optimizer_config:
warmup_steps: 40000
beta_1: 0.9
beta_2: 0.98
epsilon: 1e-9
running_config:
batch_size: 8
num_epochs: 50
checkpoint:
filepath: /remote-home/jzhan/TensorFlowASR/Models/conformer/checkpoints/{epoch:02d}.h5
save_best_only: False
save_weights_only: True
save_freq: epoch
states_dir: /remote-home/jzhan/TensorFlowASR/Models/conformer/states
tensorboard:
log_dir: /remote-home/jzhan/TensorFlowASR/Models/conformer/tensorboard
histogram_freq: 1
write_graph: True
write_images: True
update_freq: epoch
profile_batch: 2