|
| 1 | +# Copyright (c) MONAI Consortium |
| 2 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 3 | +# you may not use this file except in compliance with the License. |
| 4 | +# You may obtain a copy of the License at |
| 5 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 6 | +# Unless required by applicable law or agreed to in writing, software |
| 7 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 8 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 9 | +# See the License for the specific language governing permissions and |
| 10 | +# limitations under the License. |
| 11 | +from __future__ import annotations |
| 12 | + |
| 13 | +import json |
| 14 | +import os.path |
| 15 | + |
| 16 | +from nvflare.apis.event_type import EventType |
| 17 | +from nvflare.apis.fl_context import FLContext |
| 18 | +from nvflare.widgets.widget import Widget |
| 19 | + |
| 20 | + |
| 21 | +class PrepareJsonGenerator(Widget): |
| 22 | + """ |
| 23 | + A widget class to prepare and generate a JSON file containing data preparation configurations. |
| 24 | +
|
| 25 | + Parameters |
| 26 | + ---------- |
| 27 | + results_dir : str, optional |
| 28 | + The directory where the results will be stored (default is "prepare"). |
| 29 | + json_file_name : str, optional |
| 30 | + The name of the JSON file to be generated (default is "data_dict.json"). |
| 31 | +
|
| 32 | + Methods |
| 33 | + ------- |
| 34 | + handle_event(event_type: str, fl_ctx: FLContext) |
| 35 | + Handles events during the federated learning process. Clears the data preparation configuration |
| 36 | + at the start of a run and saves the configuration to a JSON file at the end of a run. |
| 37 | + """ |
| 38 | + |
| 39 | + def __init__(self, results_dir="prepare", json_file_name="data_dict.json"): |
| 40 | + super(PrepareJsonGenerator, self).__init__() |
| 41 | + |
| 42 | + self._results_dir = results_dir |
| 43 | + self._data_prepare_config = {} |
| 44 | + self._json_file_name = json_file_name |
| 45 | + |
| 46 | + def handle_event(self, event_type: str, fl_ctx: FLContext): |
| 47 | + if event_type == EventType.START_RUN: |
| 48 | + self._data_prepare_config.clear() |
| 49 | + elif event_type == EventType.END_RUN: |
| 50 | + self._data_prepare_config = fl_ctx.get_prop("client_data_dict", None) |
| 51 | + run_dir = fl_ctx.get_engine().get_workspace().get_run_dir(fl_ctx.get_job_id()) |
| 52 | + data_prepare_res_dir = os.path.join(run_dir, self._results_dir) |
| 53 | + if not os.path.exists(data_prepare_res_dir): |
| 54 | + os.makedirs(data_prepare_res_dir) |
| 55 | + |
| 56 | + res_file_path = os.path.join(data_prepare_res_dir, self._json_file_name) |
| 57 | + with open(res_file_path, "w") as f: |
| 58 | + json.dump(self._data_prepare_config, f) |
| 59 | + |
| 60 | + |
| 61 | +class nnUNetPackageReportJsonGenerator(Widget): |
| 62 | + """ |
| 63 | + A class to generate JSON reports for nnUNet package. |
| 64 | +
|
| 65 | + Parameters |
| 66 | + ---------- |
| 67 | + results_dir : str, optional |
| 68 | + Directory where the report will be saved (default is "package_report"). |
| 69 | + json_file_name : str, optional |
| 70 | + Name of the JSON file to save the report (default is "package_report.json"). |
| 71 | +
|
| 72 | + Methods |
| 73 | + ------- |
| 74 | + handle_event(event_type: str, fl_ctx: FLContext) |
| 75 | + Handles events to clear the report at the start of a run and save the report at the end of a run. |
| 76 | + """ |
| 77 | + |
| 78 | + def __init__(self, results_dir="package_report", json_file_name="package_report.json"): |
| 79 | + super(nnUNetPackageReportJsonGenerator, self).__init__() |
| 80 | + |
| 81 | + self._results_dir = results_dir |
| 82 | + self._report = {} |
| 83 | + self._json_file_name = json_file_name |
| 84 | + |
| 85 | + def handle_event(self, event_type: str, fl_ctx: FLContext): |
| 86 | + if event_type == EventType.START_RUN: |
| 87 | + self._report.clear() |
| 88 | + elif event_type == EventType.END_RUN: |
| 89 | + datasets = fl_ctx.get_prop("package_report", None) |
| 90 | + run_dir = fl_ctx.get_engine().get_workspace().get_run_dir(fl_ctx.get_job_id()) |
| 91 | + cross_val_res_dir = os.path.join(run_dir, self._results_dir) |
| 92 | + if not os.path.exists(cross_val_res_dir): |
| 93 | + os.makedirs(cross_val_res_dir) |
| 94 | + |
| 95 | + res_file_path = os.path.join(cross_val_res_dir, self._json_file_name) |
| 96 | + with open(res_file_path, "w") as f: |
| 97 | + json.dump(datasets, f) |
| 98 | + |
| 99 | + |
| 100 | +class nnUNetPlansJsonGenerator(Widget): |
| 101 | + """ |
| 102 | + A class to generate JSON files for nnUNet plans. |
| 103 | +
|
| 104 | + Parameters |
| 105 | + ---------- |
| 106 | + results_dir : str, optional |
| 107 | + Directory where the preprocessing results will be stored (default is "nnUNet_preprocessing"). |
| 108 | + json_file_name : str, optional |
| 109 | + Name of the JSON file to be generated (default is "nnUNetPlans.json"). |
| 110 | +
|
| 111 | + Methods |
| 112 | + ------- |
| 113 | + handle_event(event_type: str, fl_ctx: FLContext) |
| 114 | + Handles events during the federated learning process. Clears the nnUNet plans at the start of a run and saves |
| 115 | + the plans to a JSON file at the end of a run. |
| 116 | + """ |
| 117 | + |
| 118 | + def __init__(self, results_dir="nnUNet_preprocessing", json_file_name="nnUNetPlans.json"): |
| 119 | + |
| 120 | + super(nnUNetPlansJsonGenerator, self).__init__() |
| 121 | + |
| 122 | + self._results_dir = results_dir |
| 123 | + self._nnUNetPlans = {} |
| 124 | + self._json_file_name = json_file_name |
| 125 | + |
| 126 | + def handle_event(self, event_type: str, fl_ctx: FLContext): |
| 127 | + if event_type == EventType.START_RUN: |
| 128 | + self._nnUNetPlans.clear() |
| 129 | + elif event_type == EventType.END_RUN: |
| 130 | + datasets = fl_ctx.get_prop("nnunet_plans", None) |
| 131 | + run_dir = fl_ctx.get_engine().get_workspace().get_run_dir(fl_ctx.get_job_id()) |
| 132 | + cross_val_res_dir = os.path.join(run_dir, self._results_dir) |
| 133 | + if not os.path.exists(cross_val_res_dir): |
| 134 | + os.makedirs(cross_val_res_dir) |
| 135 | + |
| 136 | + res_file_path = os.path.join(cross_val_res_dir, self._json_file_name) |
| 137 | + with open(res_file_path, "w") as f: |
| 138 | + json.dump(datasets, f) |
| 139 | + |
| 140 | + |
| 141 | +class nnUNetValSummaryJsonGenerator(Widget): |
| 142 | + """ |
| 143 | + A widget to generate a JSON summary for nnUNet validation results. |
| 144 | +
|
| 145 | + Parameters |
| 146 | + ---------- |
| 147 | + results_dir : str, optional |
| 148 | + Directory where the nnUNet training results are stored (default is "nnUNet_train"). |
| 149 | + json_file_name : str, optional |
| 150 | + Name of the JSON file to save the validation summary (default is "val_summary.json"). |
| 151 | +
|
| 152 | + Methods |
| 153 | + ------- |
| 154 | + handle_event(event_type: str, fl_ctx: FLContext) |
| 155 | + Handles events during the federated learning process. Clears the nnUNet plans at the start of a run and saves |
| 156 | + the validation summary to a JSON file at the end of a run. |
| 157 | + """ |
| 158 | + |
| 159 | + def __init__(self, results_dir="nnUNet_train", json_file_name="val_summary.json"): |
| 160 | + |
| 161 | + super(nnUNetValSummaryJsonGenerator, self).__init__() |
| 162 | + |
| 163 | + self._results_dir = results_dir |
| 164 | + self._nnUNetPlans = {} |
| 165 | + self._json_file_name = json_file_name |
| 166 | + |
| 167 | + def handle_event(self, event_type: str, fl_ctx: FLContext): |
| 168 | + if event_type == EventType.START_RUN: |
| 169 | + self._nnUNetPlans.clear() |
| 170 | + elif event_type == EventType.END_RUN: |
| 171 | + datasets = fl_ctx.get_prop("val_summary_dict", None) |
| 172 | + run_dir = fl_ctx.get_engine().get_workspace().get_run_dir(fl_ctx.get_job_id()) |
| 173 | + cross_val_res_dir = os.path.join(run_dir, self._results_dir) |
| 174 | + if not os.path.exists(cross_val_res_dir): |
| 175 | + os.makedirs(cross_val_res_dir) |
| 176 | + |
| 177 | + res_file_path = os.path.join(cross_val_res_dir, self._json_file_name) |
| 178 | + with open(res_file_path, "w") as f: |
| 179 | + json.dump(datasets, f) |
0 commit comments