You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: _preview/435/_sources/cookbook-guide.md
+6Lines changed: 6 additions & 0 deletions
Original file line number
Diff line number
Diff line change
@@ -164,6 +164,12 @@ Here's a handy trick for finding your published book:
164
164
165
165
The link to your published book will then be displayed on the home page of the repo.
166
166
167
+
```{Note}
168
+
If you have transfered your repository to the ProjectPythia organization and also made a personal fork, the publishing pipeline automation will _only run on the upstream fork on the ProjectPythia organization_ so there's only one copy of the "published" book.
169
+
170
+
It's possible to enable the workflows on your personal fork, but usually unneccesary if you preview your work via Pull Requests (see below).
171
+
```
172
+
167
173
### Pull Requests and previews
168
174
169
175
Collaboration on Cookbooks is best done via [Pull Requests](https://foundations.projectpythia.org/foundations/github/github-pull-request.html). Every PR on a Cookbook repository will trigger a "Preview" version of our publishing pipeline. The entire book is re-built from the updated source and the preview site is hosted at a temporary online location. This way, the team can safely see what the end product will look like after the PR is merged.
<ahref="https://earth-env-data-science.github.io/intro"class="text-decoration-none"><h4class="display-4 p-0">An Introduction to Earth and Environmental Data Science</h4></a>
154
-
<pclass="card-subtitle"><strong>Author:</strong> Kerry Key, Ryan Abernathey<br/><strong>Affiliation:</strong> Lamont-Doherty Earth Observatory</p>
154
+
<pclass="card-subtitle"><strong>Author:</strong> Ryan Abernathey, Kerry Key<br/><strong>Affiliation:</strong> Lamont-Doherty Earth Observatory</p>
155
155
<pclass="my-2">This book grew out of a course developed at Columbia University called Research Computing in Earth Science. It was written mostly by Ryan Abernathey, with significant contributions from Kerry Key. By separating the book from the class, we hope to create an open-source community resource for python education<aclass="modal-btn"> ... more</a> </p>
<pclass="my-2">This book grew out of a course developed at Columbia University called Research Computing in Earth Science. It was written mostly by Ryan Abernathey, with significant contributions from Kerry Key. By separating the book from the class, we hope to create an open-source community resource for python education in the Earth and Environmental Sciences.
@@ -1421,7 +1421,7 @@ Xarray is inspired by and borrows heavily from pandas, the popular data analysis
<ahref="https://youtu.be/Jog7ybd6amw"class="text-decoration-none"><h4class="display-4 p-0">Your First Python Tutorial - Reading in a .txt File</h4></a>
1602
-
<pclass="card-subtitle"><strong>Author:</strong> Julia Kent, Project Pythia<br/><strong>Affiliation:</strong> <ahref="https://ncar.ucar.edu/">NCAR</a></p>
1602
+
<pclass="card-subtitle"><strong>Author:</strong> Project Pythia, Julia Kent<br/><strong>Affiliation:</strong> <ahref="https://ncar.ucar.edu/">NCAR</a></p>
1603
1603
<pclass="my-2">Recording from the Python Tutorial Seminar Series designed to teach you Python, not package specific syntax. This lessons covers setting up a work environment and opening a .txt file. The content to follow along with this video is hosted on the <Ahref="https://ncar.github.io/python-tutorial/tutorials/yourfirst.html">Xdev Python Tutorial website</A>.
1604
1604
</p>
1605
1605
</div>
@@ -1624,7 +1624,7 @@ Xarray is inspired by and borrows heavily from pandas, the popular data analysis
<ahref="https://youtu.be/5z6-t62x7Xs"class="text-decoration-none"><h4class="display-4 p-0">Your First Python Tutorial - Creating a Data Dictionary</h4></a>
1627
-
<pclass="card-subtitle"><strong>Author:</strong> Julia Kent, Project Pythia<br/><strong>Affiliation:</strong> <ahref="https://ncar.ucar.edu/">NCAR</a></p>
1627
+
<pclass="card-subtitle"><strong>Author:</strong> Project Pythia, Julia Kent<br/><strong>Affiliation:</strong> <ahref="https://ncar.ucar.edu/">NCAR</a></p>
1628
1628
<pclass="my-2">Recording from the Python Tutorial Seminar Series designed to teach you Python, not package specific syntax. This lessons covers creating a data dictionary. The content to follow along with this video is hosted on the <Ahref="https://ncar.github.io/python-tutorial/tutorials/yourfirst.html#creating-a-data-dictionary">Xdev Python Tutorial website</A>.
1629
1629
</p>
1630
1630
</div>
@@ -1649,7 +1649,7 @@ Xarray is inspired by and borrows heavily from pandas, the popular data analysis
<ahref="https://youtu.be/BerEf_3CsL8"class="text-decoration-none"><h4class="display-4 p-0">Your First Python Tutorial - Writing Functions</h4></a>
1652
-
<pclass="card-subtitle"><strong>Author:</strong> Julia Kent, Project Pythia<br/><strong>Affiliation:</strong> <ahref="https://ncar.ucar.edu/">NCAR</a></p>
1652
+
<pclass="card-subtitle"><strong>Author:</strong> Project Pythia, Julia Kent<br/><strong>Affiliation:</strong> <ahref="https://ncar.ucar.edu/">NCAR</a></p>
1653
1653
<pclass="my-2">Recording from the Python Tutorial Seminar Series designed to teach you Python, not package specific syntax. This lessons covers how to write and call functions in Python. The content to follow along with this video is hosted on the <Ahref ="https://ncar.github.io/python-tutorial/tutorials/yourfirst.html#writing-functions">Xdev Python Tutorial website</A>.
1654
1654
</p>
1655
1655
</div>
@@ -1674,7 +1674,7 @@ Xarray is inspired by and borrows heavily from pandas, the popular data analysis
<ahref="https://youtu.be/6lbbTwGFcTc"class="text-decoration-none"><h4class="display-4 p-0">Your First Python Tutorial - Creating Your Own Package</h4></a>
1677
-
<pclass="card-subtitle"><strong>Author:</strong> Julia Kent, Project Pythia<br/><strong>Affiliation:</strong> <ahref="https://ncar.ucar.edu/">NCAR</a></p>
1677
+
<pclass="card-subtitle"><strong>Author:</strong> Project Pythia, Julia Kent<br/><strong>Affiliation:</strong> <ahref="https://ncar.ucar.edu/">NCAR</a></p>
1678
1678
<pclass="my-2">Recording from the Python Tutorial Seminar Series designed to teach you Python, not package specific syntax. This lessons covers how to create and call modules and packages. The content to follow along with this video is hosted on the <Ahref="https://ncar.github.io/python-tutorial/tutorials/yourfirst.html#first-python-package">Xdev Python Tutorial website</A>.
1679
1679
</p>
1680
1680
</div>
@@ -1699,7 +1699,7 @@ Xarray is inspired by and borrows heavily from pandas, the popular data analysis
<ahref="https://youtu.be/44QUMCh2ZHU"class="text-decoration-none"><h4class="display-4 p-0">Your First Python Tutorial - Using a Built-In Package and Publishing Your Package</h4></a>
1702
-
<pclass="card-subtitle"><strong>Author:</strong> Julia Kent, Project Pythia<br/><strong>Affiliation:</strong> <ahref="https://ncar.ucar.edu/">NCAR</a></p>
1702
+
<pclass="card-subtitle"><strong>Author:</strong> Project Pythia, Julia Kent<br/><strong>Affiliation:</strong> <ahref="https://ncar.ucar.edu/">NCAR</a></p>
1703
1703
<pclass="my-2">Recording from the Python Tutorial Seminar Series designed to teach you Python, not package specific syntax. This lessons covers how to use your first external buil-in package, `math`, and how to publish your package. The content to follow along with this video is hosted on the <Ahref="https://ncar.github.io/python-tutorial/tutorials/yourfirst.html#using-a-built-in-package">Xdev Python Tutorial website</A>.
1704
1704
</p>
1705
1705
</div>
@@ -1774,7 +1774,7 @@ Xarray is inspired by and borrows heavily from pandas, the popular data analysis
<pclass="my-2">Recording from the Python Tutorial Seminar Series introducing the Python Package `matplotlib`. The content to follow along with this video is hosted on this <Ahref="https://github.com/anissa111/matplotlib-tutorial">Matplotlib Tutorial GitHub Repository</A>.
1779
1779
</p>
1780
1780
</div>
@@ -1876,7 +1876,7 @@ Xarray is inspired by and borrows heavily from pandas, the popular data analysis
<ahref="https://youtu.be/BsV3ek7qsiM"class="text-decoration-none"><h4class="display-4 p-0">Python Tutorial Seminar Series - Pandas</h4></a>
1879
-
<pclass="card-subtitle"><strong>Author:</strong> Max Grover, Drew Camron, Project Pythia<br/><strong>Affiliation:</strong> <ahref="https://ncar.ucar.edu/">NCAR</a></p>
1879
+
<pclass="card-subtitle"><strong>Author:</strong> Project Pythia, Max Grover, Drew Camron<br/><strong>Affiliation:</strong> <ahref="https://ncar.ucar.edu/">NCAR</a></p>
1880
1880
<pclass="my-2">Recording from the Python Tutorial Seminar Series introducing the Python Package `pandas`. The content to follow along with this video is hosted in this <Ahref="https://github.com/mgrover1/ncar_pandas_tutorial">Pandas Tutorial GitHub Repository</A>.
1881
1881
</p>
1882
1882
</div>
@@ -1901,7 +1901,7 @@ Xarray is inspired by and borrows heavily from pandas, the popular data analysis
<ahref="https://youtu.be/Ss4ryKukhi4"class="text-decoration-none"><h4class="display-4 p-0">Python Tutorial Seminar Series - Xarray Part 1</h4></a>
1904
-
<pclass="card-subtitle"><strong>Author:</strong> Anderson Banihirwe, Project Pythia<br/><strong>Affiliation:</strong> <ahref="https://ncar.ucar.edu/">NCAR</a></p>
1904
+
<pclass="card-subtitle"><strong>Author:</strong> Project Pythia, Anderson Banihirwe<br/><strong>Affiliation:</strong> <ahref="https://ncar.ucar.edu/">NCAR</a></p>
1905
1905
<pclass="my-2">Recording from the Python Tutorial Seminar Series introducing the Python Package `xarray`. This is the first lesson of a two part series. The content to follow along with this video is hosted in this <Ahref="https://github.com/andersy005/xarray-tutorial">Xarray Tutorial GitHub Repository</A>.
1906
1906
</p>
1907
1907
</div>
@@ -1926,7 +1926,7 @@ Xarray is inspired by and borrows heavily from pandas, the popular data analysis
<ahref="https://youtu.be/2H_4drBwORY"class="text-decoration-none"><h4class="display-4 p-0">Python Tutorial Seminar Series - Xarray Part 2</h4></a>
1929
-
<pclass="card-subtitle"><strong>Author:</strong> Anderson Banihirwe, Project Pythia<br/><strong>Affiliation:</strong> <ahref="https://ncar.ucar.edu/">NCAR</a></p>
1929
+
<pclass="card-subtitle"><strong>Author:</strong> Project Pythia, Anderson Banihirwe<br/><strong>Affiliation:</strong> <ahref="https://ncar.ucar.edu/">NCAR</a></p>
1930
1930
<pclass="my-2">Recording from the Python Tutorial Seminar Series introducing the Python Package `xarray`. This is the second lesson of a two part series. The content to follow along with this video is hosted in this <Ahref="https://github.com/andersy005/xarray-tutorial">Xarray Tutorial GitHub Repository</A>.
1931
1931
</p>
1932
1932
</div>
@@ -1951,7 +1951,7 @@ Xarray is inspired by and borrows heavily from pandas, the popular data analysis
<ahref="https://youtu.be/wn-QM6QUB_U"class="text-decoration-none"><h4class="display-4 p-0">Python Tutorial Seminar Series - Dask Part 1</h4></a>
1954
-
<pclass="card-subtitle"><strong>Author:</strong> Anderson Banihirwe, Project Pythia<br/><strong>Affiliation:</strong> <ahref="https://ncar.ucar.edu/">NCAR</a></p>
1954
+
<pclass="card-subtitle"><strong>Author:</strong> Project Pythia, Anderson Banihirwe<br/><strong>Affiliation:</strong> <ahref="https://ncar.ucar.edu/">NCAR</a></p>
1955
1955
<pclass="my-2">Recording from the Python Tutorial Seminar Series introducing the Python Package `dask`. This is the first lesson of a two part series. The content to follow along with this video is hosted in this <Ahref="https://github.com/andersy005/xarray-tutorial">Xarray Tutorial GitHub Repository</A>.
1956
1956
</p>
1957
1957
</div>
@@ -1976,7 +1976,7 @@ Xarray is inspired by and borrows heavily from pandas, the popular data analysis
<ahref="https://youtu.be/yn4_-1pHC5k"class="text-decoration-none"><h4class="display-4 p-0">Python Tutorial Seminar Series - Dask Part 2</h4></a>
1979
-
<pclass="card-subtitle"><strong>Author:</strong> Anderson Banihirwe, Project Pythia<br/><strong>Affiliation:</strong> <ahref="https://ncar.ucar.edu/">NCAR</a></p>
1979
+
<pclass="card-subtitle"><strong>Author:</strong> Project Pythia, Anderson Banihirwe<br/><strong>Affiliation:</strong> <ahref="https://ncar.ucar.edu/">NCAR</a></p>
1980
1980
<pclass="my-2">Recording from the Python Tutorial Seminar Series introducing the Python Package `dask`. This is the second lesson of a two part series. The content to follow along with this video is hosted in this <Ahref="https://github.com/andersy005/xarray-tutorial">Xarray Tutorial GitHub Repository</A>.
1981
1981
</p>
1982
1982
</div>
@@ -2001,7 +2001,7 @@ Xarray is inspired by and borrows heavily from pandas, the popular data analysis
<ahref="https://youtu.be/It231le1fAU"class="text-decoration-none"><h4class="display-4 p-0">Python Tutorial Seminar Series - Plotting with GeoCAT</h4></a>
<pclass="my-2">Recording from the Python Tutorial Seminar Series introducing advanced plotting techniques and highlighting tools developed by GeoCAT. The content to follow along with this video is hosted in this <Ahref="https://github.com/anissa111/plotting-with-geocat-tutorial">Plotting with GeoCat GitHub Repository</A>.
Copy file name to clipboardExpand all lines: _preview/435/cookbook-guide.html
+5Lines changed: 5 additions & 0 deletions
Original file line number
Diff line number
Diff line change
@@ -557,6 +557,11 @@ <h3>Where is my book?<a class="headerlink" href="#where-is-my-book" title="Link
557
557
<li><p>Select the checkbox “Use your GitHub Pages website”.</p></li>
558
558
</ul>
559
559
<p>The link to your published book will then be displayed on the home page of the repo.</p>
560
+
<divclass="admonition note">
561
+
<pclass="admonition-title">Note</p>
562
+
<p>If you have transfered your repository to the ProjectPythia organization and also made a personal fork, the publishing pipeline automation will <em>only run on the upstream fork on the ProjectPythia organization</em> so there’s only one copy of the “published” book.</p>
563
+
<p>It’s possible to enable the workflows on your personal fork, but usually unneccesary if you preview your work via Pull Requests (see below).</p>
564
+
</div>
560
565
</section>
561
566
<sectionid="pull-requests-and-previews">
562
567
<h3>Pull Requests and previews<aclass="headerlink" href="#pull-requests-and-previews" title="Link to this heading"><iclass="fas fa-link"></i></a></h3>
0 commit comments