|
| 1 | +/* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | +/* |
| 3 | + * Copyright 2021 Google LLC |
| 4 | + */ |
| 5 | +/* |
| 6 | + * This is an efficient implementation of POLYVAL using intel PCLMULQDQ-NI |
| 7 | + * instructions. It works on 8 blocks at a time, by precomputing the first 8 |
| 8 | + * keys powers h^8, ..., h^1 in the POLYVAL finite field. This precomputation |
| 9 | + * allows us to split finite field multiplication into two steps. |
| 10 | + * |
| 11 | + * In the first step, we consider h^i, m_i as normal polynomials of degree less |
| 12 | + * than 128. We then compute p(x) = h^8m_0 + ... + h^1m_7 where multiplication |
| 13 | + * is simply polynomial multiplication. |
| 14 | + * |
| 15 | + * In the second step, we compute the reduction of p(x) modulo the finite field |
| 16 | + * modulus g(x) = x^128 + x^127 + x^126 + x^121 + 1. |
| 17 | + * |
| 18 | + * This two step process is equivalent to computing h^8m_0 + ... + h^1m_7 where |
| 19 | + * multiplication is finite field multiplication. The advantage is that the |
| 20 | + * two-step process only requires 1 finite field reduction for every 8 |
| 21 | + * polynomial multiplications. Further parallelism is gained by interleaving the |
| 22 | + * multiplications and polynomial reductions. |
| 23 | + */ |
| 24 | + |
| 25 | +#include <linux/linkage.h> |
| 26 | +#include <asm/frame.h> |
| 27 | + |
| 28 | +#define STRIDE_BLOCKS 8 |
| 29 | + |
| 30 | +#define GSTAR %xmm7 |
| 31 | +#define PL %xmm8 |
| 32 | +#define PH %xmm9 |
| 33 | +#define TMP_XMM %xmm11 |
| 34 | +#define LO %xmm12 |
| 35 | +#define HI %xmm13 |
| 36 | +#define MI %xmm14 |
| 37 | +#define SUM %xmm15 |
| 38 | + |
| 39 | +#define KEY_POWERS %rdi |
| 40 | +#define MSG %rsi |
| 41 | +#define BLOCKS_LEFT %rdx |
| 42 | +#define ACCUMULATOR %rcx |
| 43 | +#define TMP %rax |
| 44 | + |
| 45 | +.section .rodata.cst16.gstar, "aM", @progbits, 16 |
| 46 | +.align 16 |
| 47 | + |
| 48 | +.Lgstar: |
| 49 | + .quad 0xc200000000000000, 0xc200000000000000 |
| 50 | + |
| 51 | +.text |
| 52 | + |
| 53 | +/* |
| 54 | + * Performs schoolbook1_iteration on two lists of 128-bit polynomials of length |
| 55 | + * count pointed to by MSG and KEY_POWERS. |
| 56 | + */ |
| 57 | +.macro schoolbook1 count |
| 58 | + .set i, 0 |
| 59 | + .rept (\count) |
| 60 | + schoolbook1_iteration i 0 |
| 61 | + .set i, (i +1) |
| 62 | + .endr |
| 63 | +.endm |
| 64 | + |
| 65 | +/* |
| 66 | + * Computes the product of two 128-bit polynomials at the memory locations |
| 67 | + * specified by (MSG + 16*i) and (KEY_POWERS + 16*i) and XORs the components of |
| 68 | + * the 256-bit product into LO, MI, HI. |
| 69 | + * |
| 70 | + * Given: |
| 71 | + * X = [X_1 : X_0] |
| 72 | + * Y = [Y_1 : Y_0] |
| 73 | + * |
| 74 | + * We compute: |
| 75 | + * LO += X_0 * Y_0 |
| 76 | + * MI += X_0 * Y_1 + X_1 * Y_0 |
| 77 | + * HI += X_1 * Y_1 |
| 78 | + * |
| 79 | + * Later, the 256-bit result can be extracted as: |
| 80 | + * [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0] |
| 81 | + * This step is done when computing the polynomial reduction for efficiency |
| 82 | + * reasons. |
| 83 | + * |
| 84 | + * If xor_sum == 1, then also XOR the value of SUM into m_0. This avoids an |
| 85 | + * extra multiplication of SUM and h^8. |
| 86 | + */ |
| 87 | +.macro schoolbook1_iteration i xor_sum |
| 88 | + movups (16*\i)(MSG), %xmm0 |
| 89 | + .if (\i == 0 && \xor_sum == 1) |
| 90 | + pxor SUM, %xmm0 |
| 91 | + .endif |
| 92 | + vpclmulqdq $0x01, (16*\i)(KEY_POWERS), %xmm0, %xmm2 |
| 93 | + vpclmulqdq $0x00, (16*\i)(KEY_POWERS), %xmm0, %xmm1 |
| 94 | + vpclmulqdq $0x10, (16*\i)(KEY_POWERS), %xmm0, %xmm3 |
| 95 | + vpclmulqdq $0x11, (16*\i)(KEY_POWERS), %xmm0, %xmm4 |
| 96 | + vpxor %xmm2, MI, MI |
| 97 | + vpxor %xmm1, LO, LO |
| 98 | + vpxor %xmm4, HI, HI |
| 99 | + vpxor %xmm3, MI, MI |
| 100 | +.endm |
| 101 | + |
| 102 | +/* |
| 103 | + * Performs the same computation as schoolbook1_iteration, except we expect the |
| 104 | + * arguments to already be loaded into xmm0 and xmm1 and we set the result |
| 105 | + * registers LO, MI, and HI directly rather than XOR'ing into them. |
| 106 | + */ |
| 107 | +.macro schoolbook1_noload |
| 108 | + vpclmulqdq $0x01, %xmm0, %xmm1, MI |
| 109 | + vpclmulqdq $0x10, %xmm0, %xmm1, %xmm2 |
| 110 | + vpclmulqdq $0x00, %xmm0, %xmm1, LO |
| 111 | + vpclmulqdq $0x11, %xmm0, %xmm1, HI |
| 112 | + vpxor %xmm2, MI, MI |
| 113 | +.endm |
| 114 | + |
| 115 | +/* |
| 116 | + * Computes the 256-bit polynomial represented by LO, HI, MI. Stores |
| 117 | + * the result in PL, PH. |
| 118 | + * [PH : PL] = [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0] |
| 119 | + */ |
| 120 | +.macro schoolbook2 |
| 121 | + vpslldq $8, MI, PL |
| 122 | + vpsrldq $8, MI, PH |
| 123 | + pxor LO, PL |
| 124 | + pxor HI, PH |
| 125 | +.endm |
| 126 | + |
| 127 | +/* |
| 128 | + * Computes the 128-bit reduction of PH : PL. Stores the result in dest. |
| 129 | + * |
| 130 | + * This macro computes p(x) mod g(x) where p(x) is in montgomery form and g(x) = |
| 131 | + * x^128 + x^127 + x^126 + x^121 + 1. |
| 132 | + * |
| 133 | + * We have a 256-bit polynomial PH : PL = P_3 : P_2 : P_1 : P_0 that is the |
| 134 | + * product of two 128-bit polynomials in Montgomery form. We need to reduce it |
| 135 | + * mod g(x). Also, since polynomials in Montgomery form have an "extra" factor |
| 136 | + * of x^128, this product has two extra factors of x^128. To get it back into |
| 137 | + * Montgomery form, we need to remove one of these factors by dividing by x^128. |
| 138 | + * |
| 139 | + * To accomplish both of these goals, we add multiples of g(x) that cancel out |
| 140 | + * the low 128 bits P_1 : P_0, leaving just the high 128 bits. Since the low |
| 141 | + * bits are zero, the polynomial division by x^128 can be done by right shifting. |
| 142 | + * |
| 143 | + * Since the only nonzero term in the low 64 bits of g(x) is the constant term, |
| 144 | + * the multiple of g(x) needed to cancel out P_0 is P_0 * g(x). The CPU can |
| 145 | + * only do 64x64 bit multiplications, so split P_0 * g(x) into x^128 * P_0 + |
| 146 | + * x^64 * g*(x) * P_0 + P_0, where g*(x) is bits 64-127 of g(x). Adding this to |
| 147 | + * the original polynomial gives P_3 : P_2 + P_0 + T_1 : P_1 + T_0 : 0, where T |
| 148 | + * = T_1 : T_0 = g*(x) * P_0. Thus, bits 0-63 got "folded" into bits 64-191. |
| 149 | + * |
| 150 | + * Repeating this same process on the next 64 bits "folds" bits 64-127 into bits |
| 151 | + * 128-255, giving the answer in bits 128-255. This time, we need to cancel P_1 |
| 152 | + * + T_0 in bits 64-127. The multiple of g(x) required is (P_1 + T_0) * g(x) * |
| 153 | + * x^64. Adding this to our previous computation gives P_3 + P_1 + T_0 + V_1 : |
| 154 | + * P_2 + P_0 + T_1 + V_0 : 0 : 0, where V = V_1 : V_0 = g*(x) * (P_1 + T_0). |
| 155 | + * |
| 156 | + * So our final computation is: |
| 157 | + * T = T_1 : T_0 = g*(x) * P_0 |
| 158 | + * V = V_1 : V_0 = g*(x) * (P_1 + T_0) |
| 159 | + * p(x) / x^{128} mod g(x) = P_3 + P_1 + T_0 + V_1 : P_2 + P_0 + T_1 + V_0 |
| 160 | + * |
| 161 | + * The implementation below saves a XOR instruction by computing P_1 + T_0 : P_0 |
| 162 | + * + T_1 and XORing into dest, rather than separately XORing P_1 : P_0 and T_0 : |
| 163 | + * T_1 into dest. This allows us to reuse P_1 + T_0 when computing V. |
| 164 | + */ |
| 165 | +.macro montgomery_reduction dest |
| 166 | + vpclmulqdq $0x00, PL, GSTAR, TMP_XMM # TMP_XMM = T_1 : T_0 = P_0 * g*(x) |
| 167 | + pshufd $0b01001110, TMP_XMM, TMP_XMM # TMP_XMM = T_0 : T_1 |
| 168 | + pxor PL, TMP_XMM # TMP_XMM = P_1 + T_0 : P_0 + T_1 |
| 169 | + pxor TMP_XMM, PH # PH = P_3 + P_1 + T_0 : P_2 + P_0 + T_1 |
| 170 | + pclmulqdq $0x11, GSTAR, TMP_XMM # TMP_XMM = V_1 : V_0 = V = [(P_1 + T_0) * g*(x)] |
| 171 | + vpxor TMP_XMM, PH, \dest |
| 172 | +.endm |
| 173 | + |
| 174 | +/* |
| 175 | + * Compute schoolbook multiplication for 8 blocks |
| 176 | + * m_0h^8 + ... + m_7h^1 |
| 177 | + * |
| 178 | + * If reduce is set, also computes the montgomery reduction of the |
| 179 | + * previous full_stride call and XORs with the first message block. |
| 180 | + * (m_0 + REDUCE(PL, PH))h^8 + ... + m_7h^1. |
| 181 | + * I.e., the first multiplication uses m_0 + REDUCE(PL, PH) instead of m_0. |
| 182 | + */ |
| 183 | +.macro full_stride reduce |
| 184 | + pxor LO, LO |
| 185 | + pxor HI, HI |
| 186 | + pxor MI, MI |
| 187 | + |
| 188 | + schoolbook1_iteration 7 0 |
| 189 | + .if \reduce |
| 190 | + vpclmulqdq $0x00, PL, GSTAR, TMP_XMM |
| 191 | + .endif |
| 192 | + |
| 193 | + schoolbook1_iteration 6 0 |
| 194 | + .if \reduce |
| 195 | + pshufd $0b01001110, TMP_XMM, TMP_XMM |
| 196 | + .endif |
| 197 | + |
| 198 | + schoolbook1_iteration 5 0 |
| 199 | + .if \reduce |
| 200 | + pxor PL, TMP_XMM |
| 201 | + .endif |
| 202 | + |
| 203 | + schoolbook1_iteration 4 0 |
| 204 | + .if \reduce |
| 205 | + pxor TMP_XMM, PH |
| 206 | + .endif |
| 207 | + |
| 208 | + schoolbook1_iteration 3 0 |
| 209 | + .if \reduce |
| 210 | + pclmulqdq $0x11, GSTAR, TMP_XMM |
| 211 | + .endif |
| 212 | + |
| 213 | + schoolbook1_iteration 2 0 |
| 214 | + .if \reduce |
| 215 | + vpxor TMP_XMM, PH, SUM |
| 216 | + .endif |
| 217 | + |
| 218 | + schoolbook1_iteration 1 0 |
| 219 | + |
| 220 | + schoolbook1_iteration 0 1 |
| 221 | + |
| 222 | + addq $(8*16), MSG |
| 223 | + schoolbook2 |
| 224 | +.endm |
| 225 | + |
| 226 | +/* |
| 227 | + * Process BLOCKS_LEFT blocks, where 0 < BLOCKS_LEFT < STRIDE_BLOCKS |
| 228 | + */ |
| 229 | +.macro partial_stride |
| 230 | + mov BLOCKS_LEFT, TMP |
| 231 | + shlq $4, TMP |
| 232 | + addq $(16*STRIDE_BLOCKS), KEY_POWERS |
| 233 | + subq TMP, KEY_POWERS |
| 234 | + |
| 235 | + movups (MSG), %xmm0 |
| 236 | + pxor SUM, %xmm0 |
| 237 | + movaps (KEY_POWERS), %xmm1 |
| 238 | + schoolbook1_noload |
| 239 | + dec BLOCKS_LEFT |
| 240 | + addq $16, MSG |
| 241 | + addq $16, KEY_POWERS |
| 242 | + |
| 243 | + test $4, BLOCKS_LEFT |
| 244 | + jz .Lpartial4BlocksDone |
| 245 | + schoolbook1 4 |
| 246 | + addq $(4*16), MSG |
| 247 | + addq $(4*16), KEY_POWERS |
| 248 | +.Lpartial4BlocksDone: |
| 249 | + test $2, BLOCKS_LEFT |
| 250 | + jz .Lpartial2BlocksDone |
| 251 | + schoolbook1 2 |
| 252 | + addq $(2*16), MSG |
| 253 | + addq $(2*16), KEY_POWERS |
| 254 | +.Lpartial2BlocksDone: |
| 255 | + test $1, BLOCKS_LEFT |
| 256 | + jz .LpartialDone |
| 257 | + schoolbook1 1 |
| 258 | +.LpartialDone: |
| 259 | + schoolbook2 |
| 260 | + montgomery_reduction SUM |
| 261 | +.endm |
| 262 | + |
| 263 | +/* |
| 264 | + * Perform montgomery multiplication in GF(2^128) and store result in op1. |
| 265 | + * |
| 266 | + * Computes op1*op2*x^{-128} mod x^128 + x^127 + x^126 + x^121 + 1 |
| 267 | + * If op1, op2 are in montgomery form, this computes the montgomery |
| 268 | + * form of op1*op2. |
| 269 | + * |
| 270 | + * void clmul_polyval_mul(u8 *op1, const u8 *op2); |
| 271 | + */ |
| 272 | +SYM_FUNC_START(clmul_polyval_mul) |
| 273 | + FRAME_BEGIN |
| 274 | + vmovdqa .Lgstar(%rip), GSTAR |
| 275 | + movups (%rdi), %xmm0 |
| 276 | + movups (%rsi), %xmm1 |
| 277 | + schoolbook1_noload |
| 278 | + schoolbook2 |
| 279 | + montgomery_reduction SUM |
| 280 | + movups SUM, (%rdi) |
| 281 | + FRAME_END |
| 282 | + RET |
| 283 | +SYM_FUNC_END(clmul_polyval_mul) |
| 284 | + |
| 285 | +/* |
| 286 | + * Perform polynomial evaluation as specified by POLYVAL. This computes: |
| 287 | + * h^n * accumulator + h^n * m_0 + ... + h^1 * m_{n-1} |
| 288 | + * where n=nblocks, h is the hash key, and m_i are the message blocks. |
| 289 | + * |
| 290 | + * rdi - pointer to precomputed key powers h^8 ... h^1 |
| 291 | + * rsi - pointer to message blocks |
| 292 | + * rdx - number of blocks to hash |
| 293 | + * rcx - pointer to the accumulator |
| 294 | + * |
| 295 | + * void clmul_polyval_update(const struct polyval_tfm_ctx *keys, |
| 296 | + * const u8 *in, size_t nblocks, u8 *accumulator); |
| 297 | + */ |
| 298 | +SYM_FUNC_START(clmul_polyval_update) |
| 299 | + FRAME_BEGIN |
| 300 | + vmovdqa .Lgstar(%rip), GSTAR |
| 301 | + movups (ACCUMULATOR), SUM |
| 302 | + subq $STRIDE_BLOCKS, BLOCKS_LEFT |
| 303 | + js .LstrideLoopExit |
| 304 | + full_stride 0 |
| 305 | + subq $STRIDE_BLOCKS, BLOCKS_LEFT |
| 306 | + js .LstrideLoopExitReduce |
| 307 | +.LstrideLoop: |
| 308 | + full_stride 1 |
| 309 | + subq $STRIDE_BLOCKS, BLOCKS_LEFT |
| 310 | + jns .LstrideLoop |
| 311 | +.LstrideLoopExitReduce: |
| 312 | + montgomery_reduction SUM |
| 313 | +.LstrideLoopExit: |
| 314 | + add $STRIDE_BLOCKS, BLOCKS_LEFT |
| 315 | + jz .LskipPartial |
| 316 | + partial_stride |
| 317 | +.LskipPartial: |
| 318 | + movups SUM, (ACCUMULATOR) |
| 319 | + FRAME_END |
| 320 | + RET |
| 321 | +SYM_FUNC_END(clmul_polyval_update) |
0 commit comments