Skip to content

Commit 36b54f0

Browse files
committed
chore: compatibility KaTeX
1 parent 92f133c commit 36b54f0

File tree

1 file changed

+12
-2
lines changed

1 file changed

+12
-2
lines changed

content/blog/coppersmith.md

Lines changed: 12 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,12 @@
1+
+++
2+
title = "Coppersmith 讲义:从直觉到实现"
3+
date = "2025-08-25"
4+
description = "单变量、二元、消元与应用"
5+
6+
[taxonomies]
7+
tags = ["CTF", "LLL", "Coppersmith", "Cryptography", "Mathematics"]
8+
+++
9+
110
# Coppersmith 方法讲义:从直觉到实现(单变量、二元、消元与应用)
211

312
本讲义基于 Steven Galbraith《Mathematics of Public Key Cryptography》ch19(Coppersmith’s Method and Related Applications)的公开章节,提供一份针对“会一点数论(会看模运算、会 gcd),但不懂格”的读者的系统说明。配套代码为纯手工、零外部依赖的最小可运行实现:单变量小根、二元小根,以及二元消元(结果式)。
@@ -50,11 +59,12 @@
5059
## 3. 与论文一致的格构造(Howgrave–Graham 变体)
5160

5261
记 $d=\deg f$。我们构造如下多项式集合(均为整系数):
62+
5363
$$
5464
\begin{aligned}
5565
\mathcal{G}
56-
= {} & \big\{\, N^{m-i}\, x^j\, f(x)^i : 0\le i<m,\, 0\le j<d \,\big\} \\
57-
&\cup\, \big\{\, x^j\, f(x)^m : 0\le j<t \,\big\}.
66+
= {} & \big\{ N^{m-i} x^j f(x)^i : 0\le i<m, 0\le j<d \big\} \\
67+
&\cup \big\{ x^j f(x)^m : 0\le j<t \big\}.
5868
\end{aligned}
5969
$$
6070

0 commit comments

Comments
 (0)