Skip to content
This repository was archived by the owner on Jan 3, 2023. It is now read-only.

Commit c5d52f1

Browse files
authored
Migrate doc changes to r0.18 (#2738)
* Migrate doc changes * Add TensorFlow version change
1 parent 55e1e17 commit c5d52f1

File tree

5 files changed

+12
-12
lines changed

5 files changed

+12
-12
lines changed

README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@ workloads on CPU for inference, please refer to the links below.
1414

1515
| Framework (Version) | Installation guide | Notes
1616
|----------------------------|----------------------------------------|-----------------------------------
17-
| TensorFlow* 1.12 | [Pip install](https://github.com/NervanaSystems/ngraph-tf#option-1-use-a-pre-built-ngraph-tensorflow-bridge) or [Build from source](https://github.com/NervanaSystems/ngraph-tf#option-2-build-ngraph-bridge-from-source) | 20 [Validated workloads]
17+
| TensorFlow* 1.13.1 | [Pip install](https://github.com/NervanaSystems/ngraph-tf#option-1-use-a-pre-built-ngraph-tensorflow-bridge) or [Build from source](https://github.com/NervanaSystems/ngraph-tf#option-2-build-ngraph-bridge-from-source) | 20 [Validated workloads]
1818
| MXNet* 1.3 | [Pip install](https://github.com/NervanaSystems/ngraph-mxnet#Installation) or [Build from source](https://github.com/NervanaSystems/ngraph-mxnet#building-with-ngraph-support)| 18 [Validated workloads]
1919
| ONNX 1.4 | [Pip install](https://github.com/NervanaSystems/ngraph-onnx#installation) | 17 [Validated workloads]
2020

doc/sphinx/source/buildlb.rst

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@ packages and prerequisites:
2323
:widths: 25, 15, 25, 20, 25
2424
:escape: ~
2525

26-
CentOS 7.4 64-bit, GCC 4.8, CMake 3.4.3, supported, ``wget zlib-devel ncurses-libs ncurses-devel patch diffutils gcc-c++ make git perl-Data-Dumper``
26+
CentOS 7.4 64-bit, GCC 4.8, CMake 3.5.0, supported, ``wget zlib-devel ncurses-libs ncurses-devel patch diffutils gcc-c++ make git perl-Data-Dumper``
2727
Ubuntu 16.04 or 18.04 (LTS) 64-bit, Clang 3.9, CMake 3.5.1 + GNU Make, supported, ``build-essential cmake clang-3.9 clang-format-3.9 git curl zlib1g zlib1g-dev libtinfo-dev unzip autoconf automake libtool``
2828
Clear Linux\* OS for Intel Architecture, Clang 5.0.1, CMake 3.10.2, experimental, bundles ``machine-learning-basic dev-utils python3-basic python-basic-dev``
2929

@@ -185,13 +185,13 @@ The process documented here will work on CentOS 7.4.
185185

186186
.. code-block:: console
187187
188-
$ wget https://cmake.org/files/v3.4/cmake-3.4.3.tar.gz
189-
$ tar -xzvf cmake-3.4.3.tar.gz
190-
$ cd cmake-3.4.3
188+
$ wget https://cmake.org/files/v3.4/cmake-3.5.0.tar.gz
189+
$ tar -xzvf cmake-3.5.0.tar.gz
190+
$ cd cmake-3.5.0
191191
$ ./bootstrap --system-curl --prefix=~/cmake
192192
$ make && make install
193193
194-
#. Clone the `NervanaSystems` ``ngraph`` repo via HTTPS and use Cmake 3.4.3 to
194+
#. Clone the `NervanaSystems` ``ngraph`` repo via HTTPS and use Cmake 3.5.0 to
195195
build nGraph Libraries to ``~/ngraph_dist``. This command enables ONNX
196196
support in the library (optional).
197197

doc/sphinx/source/conf.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -73,11 +73,11 @@
7373
# built documents.
7474
#
7575
# The short X.Y version.
76-
version = '0.17'
76+
version = '0.18'
7777

7878
# The Documentation full version, including alpha/beta/rc tags. Some features
7979
# available in the latest code will not necessarily be documented first
80-
release = '0.17.0'
80+
release = '0.18.0'
8181

8282
# The language for content autogenerated by Sphinx. Refer to documentation
8383
# for a list of supported languages.

doc/sphinx/source/frameworks/index.rst

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ cloned from one of our GitHub repos and built to connect to nGraph device
1818
backends while maintaining the framework's programmatic or user interface. Bridges
1919
currently exist for the TensorFlow\* and MXNet\* frameworks.
2020

21-
ONNX is not a framework; however, it can be used with nGraph's :doc:../python_api/index`
21+
ONNX is not a framework; however, it can be used with nGraph's :doc:`../python_api/index`
2222
to import and execute ONNX models.
2323

2424
.. figure:: ../graphics/whole-stack.png
@@ -49,7 +49,7 @@ like TensorFlow and PyTorch.
4949
:width: 725px
5050
:alt: Translation flow to nGraph function graph
5151

52-
53-
5452
.. _tune the workload to extract best performance: https://ai.intel.com/accelerating-deep-learning-training-inference-system-level-optimizations
5553
.. _a few small: https://software.intel.com/en-us/articles/boosting-deep-learning-training-inference-performance-on-xeon-and-xeon-phi
54+
55+

doc/sphinx/source/ops/quantize.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
.. quantize.rst:
1+
.. ops/quantize.rst:
22
33
########
44
Quantize

0 commit comments

Comments
 (0)