@@ -24,7 +24,7 @@ install individual components:
2424 # Install both libraries
2525 pip install cudaq-qec cudaq-solvers
2626
27- .. note ::
27+ .. note ::
2828
2929 CUDA-Q Solvers will require the presence of :code: `libgfortran `, which is
3030 not distributed with the Python wheel, for provided classical optimizers. If
@@ -71,8 +71,8 @@ Before building CUDA-QX from source, ensure your system meets the following requ
7171* **CUDA-Q **: The NVIDIA quantum-classical programming model
7272* **CMake **: Version 3.28 or higher (``pip install "cmake<4" ``), less than 4.0
7373* **GCC **: Version 11 or higher
74- * **Python **: Version 3.10, 3.11, or 3.12
75- * **NVIDIA GPU **: CUDA-capable GPU with compute capability 12 .0 or higher
74+ * **Python **: Version 3.10, 3.11, 3.12, or 3.13
75+ * **NVIDIA GPU **: CUDA-capable GPU with compute capability 7 .0 or higher
7676* **Git **: For cloning the repository
7777
7878Build Instructions
@@ -126,7 +126,7 @@ To verify your installation, run the following Python code:
126126
127127.. code-block :: python
128128
129- import cudaq_qec as qec
129+ import cudaq_qec as qec
130130 import cudaq_solvers as solvers
131131
132132
@@ -161,4 +161,4 @@ Known Blackwell Issues
161161
162162 python3 -m pip install --pre torch --index-url https://download.pytorch.org/whl/nightly/cu128
163163
164- torch is a dependency of the tensor network decoder and the GQE algorithm.
164+ torch is a dependency of the tensor network decoder and the GQE algorithm.
0 commit comments