Skip to content

Commit 107449d

Browse files
Docs preview for PR #3330.
1 parent c8be9bd commit 107449d

File tree

10 files changed

+18
-18
lines changed

10 files changed

+18
-18
lines changed

pr-3330/api/languages/python_api.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2349,7 +2349,7 @@ <h3>Spin Operators<a class="headerlink" href="#spin-operators" title="Permalink
23492349
<em class="property"><span class="pre">static</span><span class="w"> </span></em><span class="sig-name descname"><span class="pre">random</span></span><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#cudaq.operators.spin.SpinOperator.random" title="Permalink to this definition">¶</a></dt>
23502350
<dd><dl class="py function">
23512351
<dt class="sig sig-object py">
2352-
<span class="sig-name descname"><span class="pre">random</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">qubit_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">term_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">seed</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">3499951080</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#cudaq.operators.spin.SpinOperator" title="cudaq.operators.spin.SpinOperator"><span class="pre">SpinOperator</span></a></span></span></dt>
2352+
<span class="sig-name descname"><span class="pre">random</span></span><span class="sig-paren">(</span><em class="sig-param"><span class="n"><span class="pre">qubit_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">term_count</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a></span></em>, <em class="sig-param"><span class="n"><span class="pre">seed</span></span><span class="p"><span class="pre">:</span></span><span class="w"> </span><span class="n"><a class="reference external" href="https://docs.python.org/3/library/functions.html#int" title="(in Python v3.13)"><span class="pre">int</span></a></span><span class="w"> </span><span class="o"><span class="pre">=</span></span><span class="w"> </span><span class="default_value"><span class="pre">573521553</span></span></em><span class="sig-paren">)</span> <span class="sig-return"><span class="sig-return-icon">&#x2192;</span> <span class="sig-return-typehint"><a class="reference internal" href="#cudaq.operators.spin.SpinOperator" title="cudaq.operators.spin.SpinOperator"><span class="pre">SpinOperator</span></a></span></span></dt>
23532353
<dd></dd></dl>
23542354

23552355
<p>Return a random spin operator with the given number of terms (<code class="code docutils literal notranslate"><span class="pre">term_count</span></code>) where each term acts on all targets in the open range [0, qubit_count). An optional seed value may also be provided.</p>

pr-3330/applications/python/adapt_qaoa.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -971,7 +971,7 @@ <h1>ADAPT-QAOA algorithm<a class="headerlink" href="#ADAPT-QAOA-algorithm" title
971971
parameter</p>
972972
<p>3- Optimize all parameters currently in the Ansatz <span class="math notranslate nohighlight">\(\beta_m, \gamma_m = 1, 2, ...k\)</span> such that <span class="math notranslate nohighlight">\(\braket{\psi (k)|H_C|\psi(k)}\)</span> is minimized, and return to the second step.</p>
973973
<p>Below is a schematic representation of the ADAPT-QAOA algorithm explained above.</p>
974-
<div><p><img alt="c3c36692ae0f4df8b9fd739ecc6f4d61" class="no-scaled-link" src="../../_images/adapt-qaoa.png" style="width: 1000px;" /></p>
974+
<div><p><img alt="76ae905d1f6340f3b9632a3e2cfeee27" class="no-scaled-link" src="../../_images/adapt-qaoa.png" style="width: 1000px;" /></p>
975975
</div><div class="nbinput nblast docutils container">
976976
<div class="prompt highlight-none notranslate"><div class="highlight"><pre><span></span>[15]:
977977
</pre></div>

pr-3330/applications/python/adapt_vqe.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -968,7 +968,7 @@ <h1>ADAPT-VQE algorithm<a class="headerlink" href="#ADAPT-VQE-algorithm" title="
968968
<p>7- Perform a VQE experiment to re-optimize all parameters in the ansatz.</p>
969969
<p>8- go to step 4</p>
970970
<p>Below is a Schematic depiction of the ADAPT-VQE algorithm</p>
971-
<div><p><img alt="bdc6dde9c3de41cc8afdd8cf007b810b" class="no-scaled-link" src="../../_images/adapt-vqe.png" style="width: 800px;" /></p>
971+
<div><p><img alt="5ef5070e97014cae80550bb59de09d36" class="no-scaled-link" src="../../_images/adapt-vqe.png" style="width: 800px;" /></p>
972972
</div><div class="nbinput docutils container">
973973
<div class="prompt highlight-none notranslate"><div class="highlight"><pre><span></span>[1]:
974974
</pre></div>

pr-3330/applications/python/deutsch_algorithm.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1028,7 +1028,7 @@ <h2>XOR <span class="math notranslate nohighlight">\(\oplus\)</span><a class="he
10281028
</section>
10291029
<section id="Quantum-oracles">
10301030
<h2>Quantum oracles<a class="headerlink" href="#Quantum-oracles" title="Permalink to this heading"></a></h2>
1031-
<p><img alt="37e65e1dea7d4af8be43becd644a9456" class="no-scaled-link" src="../../_images/oracle.png" style="width: 300px; height: 150px;" /></p>
1031+
<p><img alt="b1950d0c32fc4c86a425309e904c96e3" class="no-scaled-link" src="../../_images/oracle.png" style="width: 300px; height: 150px;" /></p>
10321032
<p>Suppose we have <span class="math notranslate nohighlight">\(f(x): \{0,1\} \longrightarrow \{0,1\}\)</span>. We can compute this function on a quantum computer using oracles which we treat as black box functions that yield the output with an appropriate sequence of logical gates.</p>
10331033
<p>Above you see an oracle represented as <span class="math notranslate nohighlight">\(U_f\)</span> which allows us to transform the state <span class="math notranslate nohighlight">\(\ket{x}\ket{y}\)</span> into:</p>
10341034
<div class="math notranslate nohighlight">
@@ -1076,7 +1076,7 @@ <h2>Quantum parallelism<a class="headerlink" href="#Quantum-parallelism" title="
10761076
<h2>Deutsch’s Algorithm:<a class="headerlink" href="#Deutsch's-Algorithm:" title="Permalink to this heading"></a></h2>
10771077
<p>Our aim is to find out if <span class="math notranslate nohighlight">\(f: \{0,1\} \longrightarrow \{0,1\}\)</span> is a constant or a balanced function? If constant, <span class="math notranslate nohighlight">\(f(0) = f(1)\)</span>, and if balanced, <span class="math notranslate nohighlight">\(f(0) \neq f(1)\)</span>.</p>
10781078
<p>We step through the circuit diagram below and follow the math after the application of each gate.</p>
1079-
<p><img alt="094fac53a1e04c8a9996f48fb590497a" class="no-scaled-link" src="../../_images/deutsch.png" style="width: 500px; height: 210px;" /></p>
1079+
<p><img alt="e71eb7abf1e54e00b3bde6653d8223d9" class="no-scaled-link" src="../../_images/deutsch.png" style="width: 500px; height: 210px;" /></p>
10801080
<div class="math notranslate nohighlight">
10811081
\[\ket{\psi_0} = \ket{01}
10821082
\tag{1}\]</div>

pr-3330/applications/python/edge_detection.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1008,7 +1008,7 @@ <h2>Image<a class="headerlink" href="#Image" title="Permalink to this heading">
10081008
<section id="Quantum-Probability-Image-Encoding-(QPIE):">
10091009
<h2>Quantum Probability Image Encoding (QPIE):<a class="headerlink" href="#Quantum-Probability-Image-Encoding-(QPIE):" title="Permalink to this heading"></a></h2>
10101010
<p>Lets take as an example a classical 2x2 image (4 pixels). We can label each pixel with its position</p>
1011-
<div><p><img alt="3b4b34037db142f480160dc8d9157e23" class="no-scaled-link" src="../../_images/pixels-img.png" style="width: 200px;" /></p>
1011+
<div><p><img alt="1f68df82e3e04c58b43471d221158ceb" class="no-scaled-link" src="../../_images/pixels-img.png" style="width: 200px;" /></p>
10121012
</div><p>Each pixel will have its own color intensity represented along with its position label as an 8-bit black and white color. To convert the pixel intensity to probability amplitudes of a quantum state</p>
10131013
<div class="math notranslate nohighlight">
10141014
\[c_i = \frac{I_{yx}}{\sqrt(\sum I^2_{yx})}\]</div>

pr-3330/applications/python/grovers.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1050,7 +1050,7 @@ <h3>Good and Bad States<a class="headerlink" href="#Good-and-Bad-States" title="
10501050
<p>Let us now examine the geometric picture behind our current discussion. We’ll consider the ambient Hilbert space to be spanned by the standard basis vectors <span class="math notranslate nohighlight">\(|0\rangle, |1\rangle, \dots, |N-1\rangle\)</span>, where the full dimension is <span class="math notranslate nohighlight">\(N = 2^n\)</span>. Since the uniform superposition state <span class="math notranslate nohighlight">\(|\xi\rangle\)</span> can be expressed as a linear combination of the states <span class="math notranslate nohighlight">\(|G\rangle\)</span> and <span class="math notranslate nohighlight">\(|B\rangle\)</span> with real coefficients, all three states <span class="math notranslate nohighlight">\(|\xi\rangle, |G\rangle,\)</span> and <span class="math notranslate nohighlight">\(|B\rangle\)</span>
10511051
reside in a two-dimensional real subspace of the ambient Hilbert space, which we can visualize as a 2D plane as in the image below. Since, <span class="math notranslate nohighlight">\(|G\rangle\)</span> and <span class="math notranslate nohighlight">\(|B\rangle\)</span> are orthogonal, we can imagine them graphed as unit vectors in the positive <span class="math notranslate nohighlight">\(y\)</span> and positive <span class="math notranslate nohighlight">\(x\)</span> directions, respectively. From our previous expression, <span class="math notranslate nohighlight">\(\ket{\xi} = \sin(\theta) |G\rangle + \cos(\theta) |B\rangle,\)</span> we see that the state <span class="math notranslate nohighlight">\(|\xi\rangle\)</span> forms an angle <span class="math notranslate nohighlight">\(\theta\)</span> with
10521052
<span class="math notranslate nohighlight">\(|B\rangle\)</span>.</p>
1053-
<div style="text-align: center;"><p><img alt="7970305dbbb44c8498d2091837aaab2d" src="../../_images/grovers-2D-plane.png" /></p>
1053+
<div style="text-align: center;"><p><img alt="4e208ca3e8ab4f358cd38e09cd2b2fbc" src="../../_images/grovers-2D-plane.png" /></p>
10541054
</div><p>Given that the number of marked states <span class="math notranslate nohighlight">\(t\)</span> is typically small compared to <span class="math notranslate nohighlight">\(N\)</span>, it follows that <span class="math notranslate nohighlight">\(\theta = \arcsin\left(\sqrt{\frac{t}{N}}\right)\)</span> is a small angle. This assumption is reasonable, as otherwise, a sufficient number of independent queries to the oracle would likely yield a solution through classical search methods.</p>
10551055
</section>
10561056
<section id="Step-2:-Oracle-application">
@@ -1165,9 +1165,9 @@ <h4>Completing Step 3<a class="headerlink" href="#Completing-Step-3" title="Perm
11651165
<div class="math notranslate nohighlight">
11661166
\[\mathcal{G} = r_\xi \circ r_B = H^{\otimes n} \big( 2|0^{\otimes n} \rangle \langle 0^{\otimes n}| - \text{Id} \big) H^{\otimes n} \mathcal{O}_f.\]</div>
11671167
<p>The circuit diagram below puts together steps 1 through 3:</p>
1168-
<div style="text-align: center;"><p><img alt="cde0352178c14ed3b25a4b552ee8a423" src="../../_images/grovers-steps1-3.png" /></p>
1168+
<div style="text-align: center;"><p><img alt="fbf7460454ac402ca9be7adce44271a4" src="../../_images/grovers-steps1-3.png" /></p>
11691169
</div><p>Running this circuit initializes <span class="math notranslate nohighlight">\(\ket{\xi}\)</span> and performs a rotation by <span class="math notranslate nohighlight">\(2\theta\)</span> (twice the angle between <span class="math notranslate nohighlight">\(|\xi\rangle\)</span> and <span class="math notranslate nohighlight">\(|B\rangle\)</span>) in the direction from <span class="math notranslate nohighlight">\(|B\rangle\)</span> to <span class="math notranslate nohighlight">\(|G\rangle\)</span>.</p>
1170-
<div style="text-align: center;"><p><img alt="1cd92a35f2bf4e8a8530b16785fd10c8" src="../../_images/grovers-full-rotation.png" /></p>
1170+
<div style="text-align: center;"><p><img alt="b0d319bc758f45998d122c8ef1ef23ce" src="../../_images/grovers-full-rotation.png" /></p>
11711171
</div><p>Let’s verify that the state resulting from one iteration of Grover’s algorithm brings us closer to the good state, <span class="math notranslate nohighlight">\(\ket{G}\)</span>. In particular, notice that the amplitudes of <code class="docutils literal notranslate"><span class="pre">1001</span></code> and <code class="docutils literal notranslate"><span class="pre">1111</span></code> in the resulting state have been amplified compared to the equal superposition of states.</p>
11721172
<div class="nbinput docutils container">
11731173
<div class="prompt highlight-none notranslate"><div class="highlight"><pre><span></span>[18]:

pr-3330/applications/python/qm_mm_pe.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -968,7 +968,7 @@ <h2>Key concepts:<a class="headerlink" href="#Key-concepts:" title="Permalink to
968968
</section>
969969
<section id="PE-VQE-SCF-Algorithm-Steps">
970970
<h2>PE-VQE-SCF Algorithm Steps<a class="headerlink" href="#PE-VQE-SCF-Algorithm-Steps" title="Permalink to this heading"></a></h2>
971-
<div><p><img alt="8f8984de523f447295de7c4f13a47f99" class="no-scaled-link" src="../../_images/qm-mm-pe.png" style="width: 600px;" /></p>
971+
<div><p><img alt="55e64c72688f472aaa3ede7158952308" class="no-scaled-link" src="../../_images/qm-mm-pe.png" style="width: 600px;" /></p>
972972
</div><section id="Step-1:-Initialize-(Classical-pre-processing)">
973973
<h3>Step 1: Initialize (Classical pre-processing)<a class="headerlink" href="#Step-1:-Initialize-(Classical-pre-processing)" title="Permalink to this heading"></a></h3>
974974
<ul class="simple">

pr-3330/applications/python/quantum_transformer.html

Lines changed: 5 additions & 5 deletions
Large diffs are not rendered by default.

pr-3330/examples/python/performance_optimizations.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -956,9 +956,9 @@ <h1>Optimizing Performance<a class="headerlink" href="#Optimizing-Performance" t
956956
<section id="Gate-Fusion">
957957
<h2>Gate Fusion<a class="headerlink" href="#Gate-Fusion" title="Permalink to this heading"></a></h2>
958958
<p>Gate fusion is an optimization technique where consecutive gates are combined into a single gate operation to improve the efficiency of the simulation (See figure below). By targeting the <code class="docutils literal notranslate"><span class="pre">nvidia-mgpu</span></code> backend and setting the <code class="docutils literal notranslate"><span class="pre">CUDAQ_MGPU_FUSE</span></code> environment variable, you can select the degree of fusion that takes place. A full command line example would look like <code class="docutils literal notranslate"><span class="pre">CUDAQ_MGPU_FUSE=4</span> <span class="pre">python</span> <span class="pre">c2h2VQE.py</span> <span class="pre">--target</span> <span class="pre">nvidia</span> <span class="pre">--target-option</span> <span class="pre">fp64,mgpu</span></code></p>
959-
<p><img alt="1685ffdcdb214c749c3c7e1ce9b93222" src="../../_images/gate-fuse.png" /></p>
959+
<p><img alt="41cd23bb36174bce834cfa17bc785ece" src="../../_images/gate-fuse.png" /></p>
960960
<p>The importance of gate fusion is system dependent, but can have a large influence on the performance of the simulation. See the example below for a 24 qubit VQE experiment where changing the fusion level resulted in significant performance boosts.</p>
961-
<p><img alt="f1b56f26061f45969916d1c57efadaed" src="../../_images/gatefusion.png" /></p>
961+
<p><img alt="9f54c49918e54f9f95f951aa0010e264" src="../../_images/gatefusion.png" /></p>
962962
</section>
963963
</section>
964964

pr-3330/searchindex.js

Lines changed: 1 addition & 1 deletion
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

0 commit comments

Comments
 (0)