|
1 | 1 | { |
2 | 2 | "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Sumarised results from numerical experiments" |
| 8 | + ] |
| 9 | + }, |
3 | 10 | { |
4 | 11 | "cell_type": "code", |
5 | | - "execution_count": 95, |
| 12 | + "execution_count": 2, |
6 | 13 | "metadata": { |
7 | 14 | "collapsed": false |
8 | 15 | }, |
|
18 | 25 | ] |
19 | 26 | }, |
20 | 27 | { |
21 | | - "cell_type": "raw", |
| 28 | + "cell_type": "markdown", |
22 | 29 | "metadata": {}, |
23 | 30 | "source": [ |
24 | | - "exec(open(\"surface-tests.py\").read())" |
| 31 | + "To generate experiment results, run for example:\n", |
| 32 | + "\n", |
| 33 | + "`exec(open(\"surface-tests.py\").read())`\n", |
| 34 | + "\n", |
| 35 | + "This notebook only reads the results from files and generates plots." |
25 | 36 | ] |
26 | 37 | }, |
27 | 38 | { |
28 | 39 | "cell_type": "code", |
29 | | - "execution_count": 103, |
| 40 | + "execution_count": 3, |
30 | 41 | "metadata": { |
31 | 42 | "collapsed": false |
32 | 43 | }, |
|
40 | 51 | " '.idea',\n", |
41 | 52 | " '.ipynb_checkpoints',\n", |
42 | 53 | " '__pycache__',\n", |
43 | | - " 'errors_3_10_1.npy',\n", |
44 | | - " 'errors_3_1_0.npy',\n", |
45 | | - " 'errors_3_1_1.npy',\n", |
46 | | - " 'errors_3_1_2.npy',\n", |
47 | | - " 'errors_3_1_3.npy',\n", |
48 | | - " 'errors_3_2_0.npy',\n", |
49 | | - " 'errors_3_2_1.npy',\n", |
50 | | - " 'errors_3_2_2.npy',\n", |
51 | | - " 'errors_3_2_3.npy',\n", |
52 | | - " 'errors_3_3_0.npy',\n", |
53 | | - " 'errors_3_3_1.npy',\n", |
54 | | - " 'errors_3_3_2.npy',\n", |
55 | | - " 'errors_3_3_3.npy',\n", |
56 | | - " 'errors_4_1_0.npy',\n", |
57 | | - " 'errors_4_1_1.npy',\n", |
58 | | - " 'errors_4_1_2.npy',\n", |
59 | | - " 'errors_4_1_3.npy',\n", |
60 | | - " 'errors_4_1_4.npy',\n", |
61 | | - " 'errors_4_2_0.npy',\n", |
62 | | - " 'errors_4_2_1.npy',\n", |
63 | | - " 'errors_4_2_2.npy',\n", |
64 | | - " 'errors_4_2_3.npy',\n", |
65 | | - " 'errors_4_2_4.npy',\n", |
66 | | - " 'errors_4_3_0.npy',\n", |
67 | | - " 'errors_4_3_1.npy',\n", |
68 | | - " 'errors_4_3_2.npy',\n", |
69 | | - " 'errors_4_3_3.npy',\n", |
70 | | - " 'errors_4_3_4.npy',\n", |
71 | | - " 'errors_4_4_3.npy',\n", |
72 | | - " 'errors_5_1_0.npy',\n", |
73 | | - " 'errors_5_1_3.npy',\n", |
74 | | - " 'errors_6_1_0.npy',\n", |
75 | | - " 'errors_6_1_3.npy',\n", |
76 | | - " 'errors_7_1_0.npy',\n", |
77 | | - " 'errors_7_1_3.npy',\n", |
78 | | - " 'errors_8_1_0.npy',\n", |
79 | | - " 'errors_8_1_3.npy',\n", |
80 | | - " 'errors_9_1_0.npy',\n", |
81 | | - " 'errors_9_1_3.npy',\n", |
82 | 54 | " 'example1.py',\n", |
83 | | - " 'nsr_3_10_1.npy',\n", |
84 | | - " 'nsr_3_1_0.npy',\n", |
85 | | - " 'nsr_3_1_1.npy',\n", |
86 | | - " 'nsr_3_1_2.npy',\n", |
87 | | - " 'nsr_3_1_3.npy',\n", |
88 | | - " 'nsr_3_2_0.npy',\n", |
89 | | - " 'nsr_3_2_1.npy',\n", |
90 | | - " 'nsr_3_2_2.npy',\n", |
91 | | - " 'nsr_3_2_3.npy',\n", |
92 | | - " 'nsr_3_3_0.npy',\n", |
93 | | - " 'nsr_3_3_1.npy',\n", |
94 | | - " 'nsr_3_3_2.npy',\n", |
95 | | - " 'nsr_3_3_3.npy',\n", |
96 | | - " 'nsr_4_1_0.npy',\n", |
97 | | - " 'nsr_4_1_1.npy',\n", |
98 | | - " 'nsr_4_1_2.npy',\n", |
99 | | - " 'nsr_4_1_3.npy',\n", |
100 | | - " 'nsr_4_1_4.npy',\n", |
101 | | - " 'nsr_4_2_0.npy',\n", |
102 | | - " 'nsr_4_2_1.npy',\n", |
103 | | - " 'nsr_4_2_2.npy',\n", |
104 | | - " 'nsr_4_2_3.npy',\n", |
105 | | - " 'nsr_4_2_4.npy',\n", |
106 | | - " 'nsr_4_3_0.npy',\n", |
107 | | - " 'nsr_4_3_1.npy',\n", |
108 | | - " 'nsr_4_3_2.npy',\n", |
109 | | - " 'nsr_4_3_3.npy',\n", |
110 | | - " 'nsr_4_3_4.npy',\n", |
111 | | - " 'nsr_4_4_3.npy',\n", |
112 | | - " 'nsr_5_1_0.npy',\n", |
113 | | - " 'nsr_5_1_3.npy',\n", |
114 | | - " 'nsr_6_1_0.npy',\n", |
115 | | - " 'nsr_6_1_3.npy',\n", |
116 | | - " 'nsr_7_1_0.npy',\n", |
117 | | - " 'nsr_7_1_3.npy',\n", |
118 | | - " 'nsr_8_1_0.npy',\n", |
119 | | - " 'nsr_8_1_3.npy',\n", |
120 | | - " 'nsr_9_1_0.npy',\n", |
121 | | - " 'nsr_9_1_3.npy',\n", |
122 | | - " 'params_3_10_1.npy',\n", |
123 | | - " 'params_3_1_0.npy',\n", |
124 | | - " 'params_3_1_1.npy',\n", |
125 | | - " 'params_3_1_2.npy',\n", |
126 | | - " 'params_3_1_3.npy',\n", |
127 | | - " 'params_3_2_0.npy',\n", |
128 | | - " 'params_3_2_1.npy',\n", |
129 | | - " 'params_3_2_2.npy',\n", |
130 | | - " 'params_3_2_3.npy',\n", |
131 | | - " 'params_3_3_0.npy',\n", |
132 | | - " 'params_3_3_1.npy',\n", |
133 | | - " 'params_3_3_2.npy',\n", |
134 | | - " 'params_3_3_3.npy',\n", |
135 | | - " 'params_4_1_0.npy',\n", |
136 | | - " 'params_4_1_1.npy',\n", |
137 | | - " 'params_4_1_2.npy',\n", |
138 | | - " 'params_4_1_3.npy',\n", |
139 | | - " 'params_4_1_4.npy',\n", |
140 | | - " 'params_4_2_0.npy',\n", |
141 | | - " 'params_4_2_1.npy',\n", |
142 | | - " 'params_4_2_2.npy',\n", |
143 | | - " 'params_4_2_3.npy',\n", |
144 | | - " 'params_4_2_4.npy',\n", |
145 | | - " 'params_4_3_0.npy',\n", |
146 | | - " 'params_4_3_1.npy',\n", |
147 | | - " 'params_4_3_2.npy',\n", |
148 | | - " 'params_4_3_3.npy',\n", |
149 | | - " 'params_4_3_4.npy',\n", |
150 | | - " 'params_4_4_3.npy',\n", |
151 | | - " 'params_5_1_0.npy',\n", |
152 | | - " 'params_5_1_3.npy',\n", |
153 | | - " 'params_6_1_0.npy',\n", |
154 | | - " 'params_6_1_3.npy',\n", |
155 | | - " 'params_7_1_0.npy',\n", |
156 | | - " 'params_7_1_3.npy',\n", |
157 | | - " 'params_8_1_0.npy',\n", |
158 | | - " 'params_8_1_3.npy',\n", |
159 | | - " 'params_9_1_0.npy',\n", |
160 | | - " 'params_9_1_3.npy',\n", |
| 55 | + " 'experiments-results.ipynb',\n", |
| 56 | + " 'num-results',\n", |
161 | 57 | " 'pattern.ipynb',\n", |
162 | 58 | " 'plots.py',\n", |
163 | 59 | " 'results.ipynb',\n", |
|
169 | 65 | " 'solvers.py',\n", |
170 | 66 | " 'surface-images',\n", |
171 | 67 | " 'surface-reconstruction.ipynb',\n", |
172 | | - " 'surface-tests.py',\n", |
173 | | - " 'testfile.txt.npy',\n", |
174 | | - " 'tests-results.ipynb',\n", |
| 68 | + " 'surface_experiments.py',\n", |
175 | 69 | " 'unknown-locations.ipynb']" |
176 | 70 | ] |
177 | 71 | }, |
178 | | - "execution_count": 103, |
| 72 | + "execution_count": 3, |
179 | 73 | "metadata": {}, |
180 | 74 | "output_type": "execute_result" |
181 | 75 | } |
|
213 | 107 | " results[0,nl,n] = np.degrees(np.percentile(errors, q=50))\n", |
214 | 108 | " results[1,nl,n] = np.degrees(np.percentile(errors, q=95))\n", |
215 | 109 | " \n", |
216 | | - " all_errors[nl,n,:] = errors.flatten()\n" |
| 110 | + " all_errors[nl,n,:] = errors.flatten()" |
217 | 111 | ] |
218 | 112 | }, |
219 | 113 | { |
|
297 | 191 | " results[0,overs,nl,n] = np.degrees(np.percentile(errors, q=50))\n", |
298 | 192 | " results[1,overs,nl,n] = np.degrees(np.mean(errors.flatten()))\n", |
299 | 193 | "\n", |
300 | | - " all_errors[overs,nl,n,:] = errors.flatten()\n" |
| 194 | + " all_errors[overs,nl,n,:] = errors.flatten()" |
301 | 195 | ] |
302 | 196 | }, |
303 | 197 | { |
|
379 | 273 | } |
380 | 274 | }, |
381 | 275 | "nbformat": 4, |
382 | | - "nbformat_minor": 2 |
| 276 | + "nbformat_minor": 0 |
383 | 277 | } |
0 commit comments