Skip to content

Using vectorize_words leads to AttributeError #12

@gabecano4308

Description

@gabecano4308

Hello,

I am using keras ==2.9.0 and tensorflow ==2.9.1. I'm using pretrained eng_50 model like so --

c2v_model = chars2vec.load_model('eng_50')

However, when I use the vectorize_words method on my list of strings, I get the following AttributeError:

c2v_model.vectorize_words(std_job_list)


AttributeError Traceback (most recent call last)
in
----> 1 c2v_model.vectorize_words(std_job_list)

~/anaconda3/envs/JupyterSystemEnv/lib/python3.7/site-packages/chars2vec/model.py in vectorize_words(self, words, maxlen_padseq)
150 list_of_embeddings.append(np.array(current_embedding))
151
--> 152 embeddings_pad_seq = keras.preprocessing.sequence.pad_sequences(list_of_embeddings, maxlen=maxlen_padseq)
153 new_words_vectors = self.embedding_model.predict([embeddings_pad_seq])
154

AttributeError: module 'keras.preprocessing.sequence' has no attribute 'pad_sequences'

I'm not sure if there's a specific version I need to be using for keras/tensorflow. or if I'm missing something separate Any advice on this would be appreciated! Thanks

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions