diff --git a/geos-mesh/src/geos/mesh/utils/arrayHelpers.py b/geos-mesh/src/geos/mesh/utils/arrayHelpers.py
index 3139d67f..a4ae8018 100644
--- a/geos-mesh/src/geos/mesh/utils/arrayHelpers.py
+++ b/geos-mesh/src/geos/mesh/utils/arrayHelpers.py
@@ -1,15 +1,15 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright 2023-2024 TotalEnergies.
-# SPDX-FileContributor: Martin Lemay, Paloma Martinez
+# SPDX-FileContributor: Martin Lemay, Paloma Martinez, Romain Baville
from copy import deepcopy
import logging
import numpy as np
import numpy.typing as npt
import pandas as pd # type: ignore[import-untyped]
import vtkmodules.util.numpy_support as vnp
-from typing import Optional, Union, cast
+from typing import Optional, Union, Any
from vtkmodules.util.numpy_support import vtk_to_numpy
-from vtkmodules.vtkCommonCore import vtkDataArray, vtkDoubleArray, vtkPoints
+from vtkmodules.vtkCommonCore import vtkDataArray, vtkPoints
from vtkmodules.vtkCommonDataModel import ( vtkUnstructuredGrid, vtkFieldData, vtkMultiBlockDataSet, vtkDataSet,
vtkCompositeDataSet, vtkDataObject, vtkPointData, vtkCellData,
vtkDataObjectTreeIterator, vtkPolyData )
@@ -37,7 +37,7 @@ def has_array( mesh: vtkUnstructuredGrid, array_names: list[ str ] ) -> bool:
bool: True if at least one array is found, else False.
"""
# Check the cell data fields
- data: vtkFieldData | None
+ data: Union[ vtkFieldData, None ]
for data in ( mesh.GetCellData(), mesh.GetFieldData(), mesh.GetPointData() ):
if data is None:
continue # type: ignore[unreachable]
@@ -57,13 +57,13 @@ def getFieldType( data: vtkFieldData ) -> str:
- vtkPointData (inheritance of vtkFieldData)
Args:
- data (vtkFieldData): vtk field data
+ data (vtkFieldData): Vtk field data.
Returns:
str: "vtkFieldData", "vtkCellData" or "vtkPointData"
"""
if not data.IsA( "vtkFieldData" ):
- raise ValueError( f"data '{data}' entered is not a vtkFieldData object." )
+ raise ValueError( f"data '{ data }' entered is not a vtkFieldData object." )
if data.IsA( "vtkCellData" ):
return "vtkCellData"
elif data.IsA( "vtkPointData" ):
@@ -76,13 +76,13 @@ def getArrayNames( data: vtkFieldData ) -> list[ str ]:
"""Get the names of all arrays stored in a "vtkFieldData", "vtkCellData" or "vtkPointData".
Args:
- data (vtkFieldData): vtk field data
+ data (vtkFieldData): Vtk field data.
Returns:
- list[ str ]: The array names in the order that they are stored in the field data.
+ list[str]: The array names in the order that they are stored in the field data.
"""
if not data.IsA( "vtkFieldData" ):
- raise ValueError( f"data '{data}' entered is not a vtkFieldData object." )
+ raise ValueError( f"data '{ data }' entered is not a vtkFieldData object." )
return [ data.GetArrayName( i ) for i in range( data.GetNumberOfArrays() ) ]
@@ -90,16 +90,15 @@ def getArrayByName( data: vtkFieldData, name: str ) -> Optional[ vtkDataArray ]:
"""Get the vtkDataArray corresponding to the given name.
Args:
- data (vtkFieldData): vtk field data
- name (str): array name
-
+ data (vtkFieldData): Vtk field data.
+ name (str): Array name.
Returns:
Optional[ vtkDataArray ]: The vtkDataArray associated with the name given. None if not found.
"""
if data.HasArray( name ):
return data.GetArray( name )
- logging.warning( f"No array named '{name}' was found in '{data}'." )
+ logging.warning( f"No array named '{ name }' was found in '{ data }'." )
return None
@@ -107,9 +106,8 @@ def getCopyArrayByName( data: vtkFieldData, name: str ) -> Optional[ vtkDataArra
"""Get the copy of a vtkDataArray corresponding to the given name.
Args:
- data (vtkFieldData): vtk field data
- name (str): array name
-
+ data (vtkFieldData): Vtk field data.
+ name (str): Array name.
Returns:
Optional[ vtkDataArray ]: The copy of the vtkDataArray associated with the name given. None if not found.
@@ -126,7 +124,6 @@ def getNumpyGlobalIdsArray( data: Union[ vtkCellData, vtkPointData ] ) -> Option
Args:
data (Union[ vtkCellData, vtkPointData ]): Cell or point array.
-
Returns:
Optional[ npt.NDArray[ np.int64 ] ]: The numpy array of GlobalIds.
"""
@@ -137,19 +134,21 @@ def getNumpyGlobalIdsArray( data: Union[ vtkCellData, vtkPointData ] ) -> Option
return vtk_to_numpy( global_ids )
-def getNumpyArrayByName( data: vtkCellData | vtkPointData, name: str, sorted: bool = False ) -> Optional[ npt.NDArray ]:
+def getNumpyArrayByName( data: Union[ vtkCellData, vtkPointData ],
+ name: str,
+ sorted: bool = False ) -> Optional[ npt.NDArray ]:
"""Get the numpy array of a given vtkDataArray found by its name.
If sorted is selected, this allows the option to reorder the values wrt GlobalIds. If not GlobalIds was found,
no reordering will be perform.
Args:
- data (vtkCellData | vtkPointData): vtk field data.
- name (str): Array name to sort
+ data (Union[vtkCellData, vtkPointData]): Vtk field data.
+ name (str): Array name to sort.
sorted (bool, optional): Sort the output array with the help of GlobalIds. Defaults to False.
Returns:
- Optional[ npt.NDArray ]: Sorted array
+ Optional[ npt.NDArray ]: Sorted array.
"""
dataArray: Optional[ vtkDataArray ] = getArrayByName( data, name )
if dataArray is not None:
@@ -164,12 +163,11 @@ def getAttributeSet( object: Union[ vtkMultiBlockDataSet, vtkDataSet ], onPoints
"""Get the set of all attributes from an object on points or on cells.
Args:
- object (Any): object where to find the attributes.
- onPoints (bool): True if attributes are on points, False if they are on
- cells.
+ object (Any): Object where to find the attributes.
+ onPoints (bool): True if attributes are on points, False if they are on cells.
Returns:
- set[str]: set of attribute names present in input object.
+ set[str]: Set of attribute names present in input object.
"""
attributes: dict[ str, int ]
if isinstance( object, vtkMultiBlockDataSet ):
@@ -188,17 +186,14 @@ def getAttributesWithNumberOfComponents(
object: Union[ vtkMultiBlockDataSet, vtkCompositeDataSet, vtkDataSet, vtkDataObject ],
onPoints: bool,
) -> dict[ str, int ]:
- """Get the dictionnary of all attributes from object on points or cells.
+ """Get the dictionary of all attributes from object on points or cells.
Args:
- object (Any): object where to find the attributes.
- onPoints (bool): True if attributes are on points, False if they are on
- cells.
+ object (Any): Object where to find the attributes.
+ onPoints (bool): True if attributes are on points, False if they are on cells.
Returns:
- dict[str, int]: dictionnary where keys are the names of the attributes
- and values the number of components.
-
+ dict[str, int]: Dictionary where keys are the names of the attributes and values the number of components.
"""
attributes: dict[ str, int ]
if isinstance( object, ( vtkMultiBlockDataSet, vtkCompositeDataSet ) ):
@@ -212,46 +207,41 @@ def getAttributesWithNumberOfComponents(
def getAttributesFromMultiBlockDataSet( object: Union[ vtkMultiBlockDataSet, vtkCompositeDataSet ],
onPoints: bool ) -> dict[ str, int ]:
- """Get the dictionnary of all attributes of object on points or on cells.
+ """Get the dictionary of all attributes of object on points or on cells.
Args:
- object (vtkMultiBlockDataSet | vtkCompositeDataSet): object where to find
- the attributes.
- onPoints (bool): True if attributes are on points, False if they are
- on cells.
+ object (vtkMultiBlockDataSet | vtkCompositeDataSet): Object where to find the attributes.
+ onPoints (bool): True if attributes are on points, False if they are on cells.
Returns:
- dict[str, int]: Dictionnary of the names of the attributes as keys, and
- number of components as values.
-
+ dict[str, int]: Dictionary of the names of the attributes as keys, and number of components as values.
"""
attributes: dict[ str, int ] = {}
# initialize data object tree iterator
- iter: vtkDataObjectTreeIterator = vtkDataObjectTreeIterator()
- iter.SetDataSet( object )
- iter.VisitOnlyLeavesOn()
- iter.GoToFirstItem()
- while iter.GetCurrentDataObject() is not None:
- dataSet: vtkDataSet = vtkDataSet.SafeDownCast( iter.GetCurrentDataObject() )
+ iterator: vtkDataObjectTreeIterator = vtkDataObjectTreeIterator()
+ iterator.SetDataSet( object )
+ iterator.VisitOnlyLeavesOn()
+ iterator.GoToFirstItem()
+ while iterator.GetCurrentDataObject() is not None:
+ dataSet: vtkDataSet = vtkDataSet.SafeDownCast( iterator.GetCurrentDataObject() )
blockAttributes: dict[ str, int ] = getAttributesFromDataSet( dataSet, onPoints )
for attributeName, nbComponents in blockAttributes.items():
if attributeName not in attributes:
attributes[ attributeName ] = nbComponents
- iter.GoToNextItem()
+ iterator.GoToNextItem()
return attributes
def getAttributesFromDataSet( object: vtkDataSet, onPoints: bool ) -> dict[ str, int ]:
- """Get the dictionnary of all attributes of a vtkDataSet on points or cells.
+ """Get the dictionary of all attributes of a vtkDataSet on points or cells.
Args:
- object (vtkDataSet): object where to find the attributes.
- onPoints (bool): True if attributes are on points, False if they are
- on cells.
+ object (vtkDataSet): Object where to find the attributes.
+ onPoints (bool): True if attributes are on points, False if they are on cells.
Returns:
- dict[str, int]: list of the names of the attributes.
+ dict[str, int]: List of the names of the attributes.
"""
attributes: dict[ str, int ] = {}
data: Union[ vtkPointData, vtkCellData ]
@@ -268,7 +258,7 @@ def getAttributesFromDataSet( object: vtkDataSet, onPoints: bool ) -> dict[ str,
for i in range( nbAttributes ):
attributeName: str = data.GetArrayName( i )
attribute: vtkDataArray = data.GetArray( attributeName )
- assert attribute is not None, f"Attribut {attributeName} is null"
+ assert attribute is not None, f"Attribute {attributeName} is null"
nbComponents: int = attribute.GetNumberOfComponents()
attributes[ attributeName ] = nbComponents
return attributes
@@ -279,13 +269,12 @@ def isAttributeInObject( object: Union[ vtkMultiBlockDataSet, vtkDataSet ], attr
"""Check if an attribute is in the input object.
Args:
- object (vtkMultiBlockDataSet | vtkDataSet): input object
- attributeName (str): name of the attribute
- onPoints (bool): True if attributes are on points, False if they are
- on cells.
+ object (vtkMultiBlockDataSet | vtkDataSet): Input object.
+ attributeName (str): Name of the attribute.
+ onPoints (bool): True if attributes are on points, False if they are on cells.
Returns:
- bool: True if the attribute is in the table, False otherwise
+ bool: True if the attribute is in the table, False otherwise.
"""
if isinstance( object, vtkMultiBlockDataSet ):
return isAttributeInObjectMultiBlockDataSet( object, attributeName, onPoints )
@@ -299,23 +288,22 @@ def isAttributeInObjectMultiBlockDataSet( object: vtkMultiBlockDataSet, attribut
"""Check if an attribute is in the input object.
Args:
- object (vtkMultiBlockDataSet): input multiblock object
- attributeName (str): name of the attribute
- onPoints (bool): True if attributes are on points, False if they are
- on cells.
+ object (vtkMultiBlockDataSet): Input multiBlockDataSet.
+ attributeName (str): Name of the attribute.
+ onPoints (bool): True if attributes are on points, False if they are on cells.
Returns:
- bool: True if the attribute is in the table, False otherwise
+ bool: True if the attribute is in the table, False otherwise.
"""
- iter: vtkDataObjectTreeIterator = vtkDataObjectTreeIterator()
- iter.SetDataSet( object )
- iter.VisitOnlyLeavesOn()
- iter.GoToFirstItem()
- while iter.GetCurrentDataObject() is not None:
- dataSet: vtkDataSet = vtkDataSet.SafeDownCast( iter.GetCurrentDataObject() )
+ iterator: vtkDataObjectTreeIterator = vtkDataObjectTreeIterator()
+ iterator.SetDataSet( object )
+ iterator.VisitOnlyLeavesOn()
+ iterator.GoToFirstItem()
+ while iterator.GetCurrentDataObject() is not None:
+ dataSet: vtkDataSet = vtkDataSet.SafeDownCast( iterator.GetCurrentDataObject() )
if isAttributeInObjectDataSet( dataSet, attributeName, onPoints ):
return True
- iter.GoToNextItem()
+ iterator.GoToNextItem()
return False
@@ -323,13 +311,12 @@ def isAttributeInObjectDataSet( object: vtkDataSet, attributeName: str, onPoints
"""Check if an attribute is in the input object.
Args:
- object (vtkDataSet): input object
- attributeName (str): name of the attribute
- onPoints (bool): True if attributes are on points, False if they are
- on cells.
+ object (vtkDataSet): Input object.
+ attributeName (str): Name of the attribute.
+ onPoints (bool): True if attributes are on points, False if they are on cells.
Returns:
- bool: True if the attribute is in the table, False otherwise
+ bool: True if the attribute is in the table, False otherwise.
"""
data: Union[ vtkPointData, vtkCellData ]
sup: str = ""
@@ -339,38 +326,96 @@ def isAttributeInObjectDataSet( object: vtkDataSet, attributeName: str, onPoints
else:
data = object.GetCellData()
sup = "Cell"
- assert data is not None, f"{sup} data was not recovered."
+ assert data is not None, f"{ sup } data was not recovered."
return bool( data.HasArray( attributeName ) )
-def getArrayInObject( object: vtkDataSet, attributeName: str, onPoints: bool ) -> npt.NDArray[ np.float64 ]:
+def isAttributeGlobal( object: vtkMultiBlockDataSet, attributeName: str, onPoints: bool ) -> bool:
+ """Check if an attribute is global in the input multiBlockDataSet.
+
+ Args:
+ object (vtkMultiBlockDataSet): Input object.
+ attributeName (str): Name of the attribute.
+ onPoints (bool): True if attributes are on points, False if they are on cells.
+
+ Returns:
+ bool: True if the attribute is global, False if not.
+ """
+ isOnBlock: bool
+ nbBlock: int = object.GetNumberOfBlocks()
+ for idBlock in range( nbBlock ):
+ block: vtkDataSet = vtkDataSet.SafeDownCast( object.GetBlock( idBlock ) )
+ isOnBlock = isAttributeInObjectDataSet( block, attributeName, onPoints )
+ if not isOnBlock:
+ return False
+
+ return True
+
+
+def getArrayInObject( object: vtkDataSet, attributeName: str, onPoints: bool ) -> npt.NDArray[ Any ]:
"""Return the numpy array corresponding to input attribute name in table.
Args:
- object (PointSet or UnstructuredGrid): input object
- attributeName (str): name of the attribute
- onPoints (bool): True if attributes are on points, False if they are
- on cells.
+ object (PointSet or UnstructuredGrid): Input object.
+ attributeName (str): Name of the attribute.
+ onPoints (bool): True if attributes are on points, False if they are on cells.
+
+ Returns:
+ ArrayLike[Any]: The numpy array corresponding to input attribute name.
+ """
+ vtkArray: vtkDataArray = getVtkArrayInObject( object, attributeName, onPoints )
+ npArray: npt.NDArray[ Any ] = vnp.vtk_to_numpy( vtkArray ) # type: ignore[no-untyped-call]
+ return npArray
+
+
+def getVtkArrayTypeInObject( object: vtkDataSet, attributeName: str, onPoints: bool ) -> int:
+ """Return VTK type of requested array from dataset input.
+
+ Args:
+ object (PointSet or UnstructuredGrid): Input object.
+ attributeName (str): Name of the attribute.
+ onPoints (bool): True if attributes are on points, False if they are on cells.
+
+ Returns:
+ int: The type of the vtk array corresponding to input attribute name.
+ """
+ array: vtkDataArray = getVtkArrayInObject( object, attributeName, onPoints )
+ vtkArrayType: int = array.GetDataType()
+
+ return vtkArrayType
+
+
+def getVtkArrayTypeInMultiBlock( multiBlockDataSet: vtkMultiBlockDataSet, attributeName: str, onPoints: bool ) -> int:
+ """Return VTK type of requested array from multiblock dataset input, if existing.
+
+ Args:
+ multiBlockDataSet (vtkMultiBlockDataSet): Input object.
+ attributeName (str): Name of the attribute.
+ onPoints (bool): True if attributes are on points, False if they are on cells.
Returns:
- ArrayLike[float]: the array corresponding to input attribute name.
+ int: Type of the requested vtk array if existing in input multiblock dataset.
"""
- array: vtkDoubleArray = getVtkArrayInObject( object, attributeName, onPoints )
- nparray: npt.NDArray[ np.float64 ] = vnp.vtk_to_numpy( array ) # type: ignore[no-untyped-call]
- return nparray
+ nbBlocks = multiBlockDataSet.GetNumberOfBlocks()
+ for idBlock in range( nbBlocks ):
+ object: vtkDataSet = vtkDataSet.SafeDownCast( multiBlockDataSet.GetBlock( idBlock ) )
+ listAttributes: set[ str ] = getAttributeSet( object, onPoints )
+ if attributeName in listAttributes:
+ return getVtkArrayTypeInObject( object, attributeName, onPoints )
+
+ raise AssertionError( "The vtkMultiBlockDataSet has no attribute with the name " + attributeName + "." )
-def getVtkArrayInObject( object: vtkDataSet, attributeName: str, onPoints: bool ) -> vtkDoubleArray:
+def getVtkArrayInObject( object: vtkDataSet, attributeName: str, onPoints: bool ) -> vtkDataArray:
"""Return the array corresponding to input attribute name in table.
Args:
- object (PointSet or UnstructuredGrid): input object
- attributeName (str): name of the attribute
- onPoints (bool): True if attributes are on points, False if they are
- on cells.
+ object (PointSet or UnstructuredGrid): Input object.
+ attributeName (str): Name of the attribute.
+ onPoints (bool): True if attributes are on points, False if they are on cells.
Returns:
- vtkDoubleArray: the vtk array corresponding to input attribute name.
+ vtkDataArray: The vtk array corresponding to input attribute name.
"""
assert isAttributeInObject( object, attributeName, onPoints ), f"{attributeName} is not in input object."
return object.GetPointData().GetArray( attributeName ) if onPoints else object.GetCellData().GetArray(
@@ -385,14 +430,12 @@ def getNumberOfComponents(
"""Get the number of components of attribute attributeName in dataSet.
Args:
- dataSet (vtkMultiBlockDataSet | vtkCompositeDataSet | vtkDataSet):
- dataSet where the attribute is.
- attributeName (str): name of the attribute
- onPoints (bool): True if attributes are on points, False if they are
- on cells.
+ dataSet (vtkMultiBlockDataSet | vtkCompositeDataSet | vtkDataSet): DataSet where the attribute is.
+ attributeName (str): Name of the attribute.
+ onPoints (bool): True if attributes are on points, False if they are on cells.
Returns:
- int: number of components.
+ int: Number of components.
"""
if isinstance( dataSet, vtkDataSet ):
return getNumberOfComponentsDataSet( dataSet, attributeName, onPoints )
@@ -406,15 +449,14 @@ def getNumberOfComponentsDataSet( dataSet: vtkDataSet, attributeName: str, onPoi
"""Get the number of components of attribute attributeName in dataSet.
Args:
- dataSet (vtkDataSet): dataSet where the attribute is.
- attributeName (str): name of the attribute
- onPoints (bool): True if attributes are on points, False if they are
- on cells.
+ dataSet (vtkDataSet): DataSet where the attribute is.
+ attributeName (str): Name of the attribute.
+ onPoints (bool): True if attributes are on points, False if they are on cells.
Returns:
- int: number of components.
+ int: Number of components.
"""
- array: vtkDoubleArray = getVtkArrayInObject( dataSet, attributeName, onPoints )
+ array: vtkDataArray = getVtkArrayInObject( dataSet, attributeName, onPoints )
return array.GetNumberOfComponents()
@@ -427,18 +469,17 @@ def getNumberOfComponentsMultiBlock(
Args:
dataSet (vtkMultiBlockDataSet | vtkCompositeDataSet): multi block data Set where the attribute is.
- attributeName (str): name of the attribute
- onPoints (bool): True if attributes are on points, False if they are
- on cells.
+ attributeName (str): Name of the attribute.
+ onPoints (bool): True if attributes are on points, False if they are on cells.
Returns:
- int: number of components.
+ int: Number of components.
"""
elementaryBlockIndexes: list[ int ] = getBlockElementIndexesFlatten( dataSet )
for blockIndex in elementaryBlockIndexes:
- block: vtkDataSet = cast( vtkDataSet, getBlockFromFlatIndex( dataSet, blockIndex ) )
+ block: vtkDataSet = vtkDataSet.SafeDownCast( getBlockFromFlatIndex( dataSet, blockIndex ) )
if isAttributeInObject( block, attributeName, onPoints ):
- array: vtkDoubleArray = getVtkArrayInObject( block, attributeName, onPoints )
+ array: vtkDataArray = getVtkArrayInObject( block, attributeName, onPoints )
return array.GetNumberOfComponents()
return 0
@@ -451,15 +492,12 @@ def getComponentNames(
"""Get the name of the components of attribute attributeName in dataSet.
Args:
- dataSet (vtkDataSet | vtkMultiBlockDataSet | vtkCompositeDataSet | vtkDataObject): dataSet
- where the attribute is.
- attributeName (str): name of the attribute
- onPoints (bool): True if attributes are on points, False if they are
- on cells.
+ dataSet (vtkDataSet | vtkMultiBlockDataSet | vtkCompositeDataSet | vtkDataObject): DataSet where the attribute is.
+ attributeName (str): Name of the attribute.
+ onPoints (bool): True if attributes are on points, False if they are on cells.
Returns:
- tuple[str,...]: names of the components.
-
+ tuple[str,...]: Names of the components.
"""
if isinstance( dataSet, vtkDataSet ):
return getComponentNamesDataSet( dataSet, attributeName, onPoints )
@@ -473,16 +511,14 @@ def getComponentNamesDataSet( dataSet: vtkDataSet, attributeName: str, onPoints:
"""Get the name of the components of attribute attributeName in dataSet.
Args:
- dataSet (vtkDataSet): dataSet where the attribute is.
- attributeName (str): name of the attribute
- onPoints (bool): True if attributes are on points, False if they are
- on cells.
+ dataSet (vtkDataSet): DataSet where the attribute is.
+ attributeName (str): Name of the attribute.
+ onPoints (bool): True if attributes are on points, False if they are on cells.
Returns:
- tuple[str,...]: names of the components.
-
+ tuple[str,...]: Names of the components.
"""
- array: vtkDoubleArray = getVtkArrayInObject( dataSet, attributeName, onPoints )
+ array: vtkDataArray = getVtkArrayInObject( dataSet, attributeName, onPoints )
componentNames: list[ str ] = []
if array.GetNumberOfComponents() > 1:
@@ -498,18 +534,16 @@ def getComponentNamesMultiBlock(
"""Get the name of the components of attribute in MultiBlockDataSet.
Args:
- dataSet (vtkMultiBlockDataSet | vtkCompositeDataSet): dataSet where the
- attribute is.
- attributeName (str): name of the attribute
- onPoints (bool): True if attributes are on points, False if they are
- on cells.
+ dataSet (vtkMultiBlockDataSet | vtkCompositeDataSet): DataSet where the attribute is.
+ attributeName (str): Name of the attribute.
+ onPoints (bool): True if attributes are on points, False if they are on cells.
Returns:
- tuple[str,...]: names of the components.
+ tuple[str,...]: Names of the components.
"""
elementaryBlockIndexes: list[ int ] = getBlockElementIndexesFlatten( dataSet )
for blockIndex in elementaryBlockIndexes:
- block: vtkDataSet = cast( vtkDataSet, getBlockFromFlatIndex( dataSet, blockIndex ) )
+ block: vtkDataSet = vtkDataSet.SafeDownCast( getBlockFromFlatIndex( dataSet, blockIndex ) )
if isAttributeInObject( block, attributeName, onPoints ):
return getComponentNamesDataSet( block, attributeName, onPoints )
return ()
@@ -519,36 +553,8 @@ def getAttributeValuesAsDF( surface: vtkPolyData, attributeNames: tuple[ str, ..
"""Get attribute values from input surface.
Args:
- surface (vtkPolyData): mesh where to get attribute values
- attributeNames (tuple[str,...]): tuple of attribute names to get the values.
-
- Returns:
- pd.DataFrame: DataFrame containing property names as columns.
-
- """
- nbRows: int = surface.GetNumberOfCells()
- data: pd.DataFrame = pd.DataFrame( np.full( ( nbRows, len( attributeNames ) ), np.nan ), columns=attributeNames )
- for attributeName in attributeNames:
- if not isAttributeInObject( surface, attributeName, False ):
- logging.warning( f"Attribute {attributeName} is not in the mesh." )
- continue
- array: npt.NDArray[ np.float64 ] = getArrayInObject( surface, attributeName, False )
-
- if len( array.shape ) > 1:
- for i in range( array.shape[ 1 ] ):
- data[ attributeName + f"_{i}" ] = array[ :, i ]
- data.drop( columns=[ attributeName ], inplace=True )
- else:
- data[ attributeName ] = array
- return data
-
-
-def AsDF( surface: vtkPolyData, attributeNames: tuple[ str, ...] ) -> pd.DataFrame:
- """Get attribute values from input surface.
-
- Args:
- surface (vtkPolyData): mesh where to get attribute values
- attributeNames (tuple[str,...]): tuple of attribute names to get the values.
+ surface (vtkPolyData): Mesh where to get attribute values.
+ attributeNames (tuple[str,...]): Tuple of attribute names to get the values.
Returns:
pd.DataFrame: DataFrame containing property names as columns.
@@ -564,7 +570,7 @@ def AsDF( surface: vtkPolyData, attributeNames: tuple[ str, ...] ) -> pd.DataFra
if len( array.shape ) > 1:
for i in range( array.shape[ 1 ] ):
- data[ attributeName + f"_{i}" ] = array[ :, i ]
+ data[ attributeName + f"_{ i }" ] = array[ :, i ]
data.drop( columns=[ attributeName ], inplace=True )
else:
data[ attributeName ] = array
@@ -577,11 +583,11 @@ def getBounds(
"""Get bounds of either single of composite data set.
Args:
- input (Union[vtkUnstructuredGrid, vtkMultiBlockDataSet]): input mesh
+ input (Union[vtkUnstructuredGrid, vtkMultiBlockDataSet]): Input mesh.
Returns:
- tuple[float, float, float, float, float, float]: tuple containing
- bounds (xmin, xmax, ymin, ymax, zmin, zmax)
+ tuple[float, float, float, float, float, float]: Tuple containing
+ bounds (xmin, xmax, ymin, ymax, zmin, zmax).
"""
if isinstance( input, vtkMultiBlockDataSet ):
@@ -594,11 +600,11 @@ def getMonoBlockBounds( input: vtkUnstructuredGrid, ) -> tuple[ float, float, fl
"""Get boundary box extrema coordinates for a vtkUnstructuredGrid.
Args:
- input (vtkMultiBlockDataSet): input single block mesh
+ input (vtkMultiBlockDataSet): Input single block mesh.
Returns:
- tuple[float, float, float, float, float, float]: tuple containing
- bounds (xmin, xmax, ymin, ymax, zmin, zmax)
+ tuple[float, float, float, float, float, float]: Tuple containing
+ bounds (xmin, xmax, ymin, ymax, zmin, zmax).
"""
return input.GetBounds()
@@ -608,10 +614,10 @@ def getMultiBlockBounds( input: vtkMultiBlockDataSet, ) -> tuple[ float, float,
"""Get boundary box extrema coordinates for a vtkMultiBlockDataSet.
Args:
- input (vtkMultiBlockDataSet): input multiblock mesh
+ input (vtkMultiBlockDataSet): Input multiblock mesh.
Returns:
- tuple[float, float, float, float, float, float]: bounds.
+ tuple[float, float, float, float, float, float]: Bounds.
"""
xmin, ymin, zmin = 3 * [ np.inf ]
@@ -635,10 +641,10 @@ def computeCellCenterCoordinates( mesh: vtkDataSet ) -> vtkDataArray:
"""Get the coordinates of Cell center.
Args:
- mesh (vtkDataSet): input surface
+ mesh (vtkDataSet): Input surface.
Returns:
- vtkPoints: cell center coordinates
+ vtkPoints: Cell center coordinates.
"""
assert mesh is not None, "Surface is undefined."
filter: vtkCellCenters = vtkCellCenters()
@@ -655,8 +661,8 @@ def sortArrayByGlobalIds( data: Union[ vtkCellData, vtkPointData ], arr: npt.NDA
"""Sort an array following global Ids.
Args:
- data (vtkFieldData): Global Ids array
- arr (npt.NDArray[ np.float64 ]): Array to sort
+ data (vtkFieldData): Global Ids array.
+ arr (npt.NDArray[ np.float64 ]): Array to sort.
"""
globalids: Optional[ npt.NDArray[ np.int64 ] ] = getNumpyGlobalIdsArray( data )
if globalids is not None:
diff --git a/geos-mesh/src/geos/mesh/utils/arrayModifiers.py b/geos-mesh/src/geos/mesh/utils/arrayModifiers.py
index 6d9a738c..79a1b6b6 100644
--- a/geos-mesh/src/geos/mesh/utils/arrayModifiers.py
+++ b/geos-mesh/src/geos/mesh/utils/arrayModifiers.py
@@ -1,339 +1,679 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright 2023-2024 TotalEnergies.
-# SPDX-FileContributor: Martin Lemay, Alexandre Benedicto, Paloma Martinez
+# SPDX-FileContributor: Martin Lemay, Alexandre Benedicto, Paloma Martinez, Romain Baville
import numpy as np
import numpy.typing as npt
import vtkmodules.util.numpy_support as vnp
-from typing import Union
-from vtkmodules.vtkCommonDataModel import ( vtkMultiBlockDataSet, vtkDataSet, vtkPointSet, vtkCompositeDataSet,
- vtkDataObject, vtkDataObjectTreeIterator )
-from vtkmodules.vtkFiltersCore import vtkArrayRename, vtkCellCenters, vtkPointDataToCellData
+from typing import Union, Any
+from geos.utils.Logger import getLogger, Logger
+
from vtk import ( # type: ignore[import-untyped]
- VTK_CHAR, VTK_DOUBLE, VTK_FLOAT, VTK_INT, VTK_UNSIGNED_INT,
+ VTK_BIT, VTK_UNSIGNED_CHAR, VTK_UNSIGNED_SHORT, VTK_UNSIGNED_LONG, VTK_UNSIGNED_INT, VTK_UNSIGNED_LONG_LONG,
+ VTK_CHAR, VTK_SIGNED_CHAR, VTK_SHORT, VTK_LONG, VTK_INT, VTK_LONG_LONG, VTK_ID_TYPE, VTK_FLOAT, VTK_DOUBLE,
+)
+from vtkmodules.vtkCommonDataModel import (
+ vtkMultiBlockDataSet,
+ vtkDataSet,
+ vtkPointSet,
+ vtkCompositeDataSet,
+ vtkDataObject,
+ vtkDataObjectTreeIterator,
+ vtkPointData,
+ vtkCellData,
+)
+from vtkmodules.vtkFiltersCore import (
+ vtkArrayRename,
+ vtkCellCenters,
+ vtkPointDataToCellData,
)
from vtkmodules.vtkCommonCore import (
- vtkCharArray,
vtkDataArray,
- vtkDoubleArray,
- vtkFloatArray,
- vtkIntArray,
vtkPoints,
- vtkUnsignedIntArray,
)
from geos.mesh.utils.arrayHelpers import (
getComponentNames,
+ getComponentNamesDataSet,
getAttributesWithNumberOfComponents,
- getAttributeSet,
getArrayInObject,
isAttributeInObject,
+ isAttributeInObjectDataSet,
+ isAttributeInObjectMultiBlockDataSet,
+ isAttributeGlobal,
+ getVtkArrayTypeInObject,
+ getVtkArrayTypeInMultiBlock,
+)
+from geos.mesh.utils.multiblockHelpers import (
+ getBlockElementIndexesFlatten,
+ getBlockFromFlatIndex,
)
-from geos.mesh.utils.multiblockHelpers import getBlockElementIndexesFlatten, getBlockFromFlatIndex
__doc__ = """
ArrayModifiers contains utilities to process VTK Arrays objects.
These methods include:
- - filling partial VTK arrays with nan values (useful for block merge)
+ - filling partial VTK arrays with values (useful for block merge)
- creation of new VTK array, empty or with a given data array
- transfer from VTK point data to VTK cell data
"""
def fillPartialAttributes(
- multiBlockMesh: Union[ vtkMultiBlockDataSet, vtkCompositeDataSet, vtkDataObject ],
+ multiBlockDataSet: Union[ vtkMultiBlockDataSet, vtkCompositeDataSet, vtkDataObject ],
attributeName: str,
- nbComponents: int,
onPoints: bool = False,
+ value: Any = np.nan,
+ logger: Union[ Logger, None ] = None,
) -> bool:
- """Fill input partial attribute of multiBlockMesh with nan values.
+ """Fill input partial attribute of multiBlockDataSet with the same value for all the components.
Args:
- multiBlockMesh (vtkMultiBlockDataSet | vtkCompositeDataSet | vtkDataObject): multiBlock
- mesh where to fill the attribute
- attributeName (str): attribute name
- nbComponents (int): number of components
- onPoints (bool, optional): Attribute is on Points (False) or
- on Cells.
-
+ multiBlockDataSet (vtkMultiBlockDataSet | vtkCompositeDataSet | vtkDataObject): MultiBlockDataSet where to fill the attribute.
+ attributeName (str): Attribute name.
+ onPoints (bool, optional): True if attributes are on points, False if they are on cells.
Defaults to False.
+ value (Any, optional): Filling value. It is recommended to use numpy scalar type for the values.
+ Defaults to:
+ -1 for int VTK arrays.
+ 0 for uint VTK arrays.
+ nan for float VTK arrays.
+ logger (Union[Logger, None], optional): A logger to manage the output messages.
+ Defaults to None, an internal logger is used.
Returns:
- bool: True if calculation successfully ended, False otherwise
+ bool: True if the attribute was correctly created and filled, False if not.
"""
+ # Check if an external logger is given.
+ if logger is None:
+ logger = getLogger( "fillPartialAttributes", True )
+
+ # Check if the input mesh is inherited from vtkMultiBlockDataSet.
+ if not isinstance( multiBlockDataSet, vtkMultiBlockDataSet ):
+ logger.error( "Input mesh has to be inherited from vtkMultiBlockDataSet." )
+ return False
+
+ # Check if the attribute is partial.
+ if isAttributeGlobal( multiBlockDataSet, attributeName, onPoints ):
+ logger.error( f"The attribute { attributeName } is already global." )
+ return False
+
+ # Get information of the attribute to fill.
+ vtkDataType: int = getVtkArrayTypeInMultiBlock( multiBlockDataSet, attributeName, onPoints )
+ infoAttributes: dict[ str, int ] = getAttributesWithNumberOfComponents( multiBlockDataSet, onPoints )
+ nbComponents: int = infoAttributes[ attributeName ]
componentNames: tuple[ str, ...] = ()
if nbComponents > 1:
- componentNames = getComponentNames( multiBlockMesh, attributeName, onPoints )
- values: list[ float ] = [ np.nan for _ in range( nbComponents ) ]
- createConstantAttribute( multiBlockMesh, values, attributeName, componentNames, onPoints )
- multiBlockMesh.Modified()
+ componentNames = getComponentNames( multiBlockDataSet, attributeName, onPoints )
+
+ # Set the default value depending of the type of the attribute to fill
+ if np.isnan( value ):
+ typeMapping: dict[ int, type ] = vnp.get_vtk_to_numpy_typemap()
+ valueType: type = typeMapping[ vtkDataType ]
+ # Default value for float types is nan.
+ if vtkDataType in ( VTK_FLOAT, VTK_DOUBLE ):
+ value = valueType( value )
+ logger.warning(
+ f"{ attributeName } vtk data type is { vtkDataType } corresponding to { value.dtype } numpy type, default value is automatically set to nan."
+ )
+ # Default value for int types is -1.
+ elif vtkDataType in ( VTK_CHAR, VTK_SIGNED_CHAR, VTK_SHORT, VTK_LONG, VTK_INT, VTK_LONG_LONG, VTK_ID_TYPE ):
+ value = valueType( -1 )
+ logger.warning(
+ f"{ attributeName } vtk data type is { vtkDataType } corresponding to { value.dtype } numpy type, default value is automatically set to -1."
+ )
+ # Default value for uint types is 0.
+ elif vtkDataType in ( VTK_BIT, VTK_UNSIGNED_CHAR, VTK_UNSIGNED_SHORT, VTK_UNSIGNED_LONG, VTK_UNSIGNED_INT,
+ VTK_UNSIGNED_LONG_LONG ):
+ value = valueType( 0 )
+ logger.warning(
+ f"{ attributeName } vtk data type is { vtkDataType } corresponding to { value.dtype } numpy type, default value is automatically set to 0."
+ )
+ else:
+ logger.error( f"The type of the attribute { attributeName } is not compatible with the function." )
+ return False
+
+ values: list[ Any ] = [ value for _ in range( nbComponents ) ]
+
+ # Parse the multiBlockDataSet to create and fill the attribute on blocks where it is not.
+ iterator: vtkDataObjectTreeIterator = vtkDataObjectTreeIterator()
+ iterator.SetDataSet( multiBlockDataSet )
+ iterator.VisitOnlyLeavesOn()
+ iterator.GoToFirstItem()
+ while iterator.GetCurrentDataObject() is not None:
+ dataSet: vtkDataSet = vtkDataSet.SafeDownCast( iterator.GetCurrentDataObject() )
+ if not isAttributeInObjectDataSet( dataSet, attributeName, onPoints ) and \
+ not createConstantAttributeDataSet( dataSet, values, attributeName, componentNames, onPoints, vtkDataType, logger ):
+ return False
+
+ iterator.GoToNextItem()
+
return True
def fillAllPartialAttributes(
- multiBlockMesh: Union[ vtkMultiBlockDataSet, vtkCompositeDataSet, vtkDataObject ],
- onPoints: bool = False,
+ multiBlockDataSet: Union[ vtkMultiBlockDataSet, vtkCompositeDataSet, vtkDataObject ],
+ logger: Union[ Logger, None ] = None,
) -> bool:
- """Fill all the partial attributes of multiBlockMesh with nan values.
+ """Fill all partial attributes of a multiBlockDataSet with the default value. All components of each attributes are filled with the same value. Depending of the type of the attribute, the default value is different 0, -1 and nan for respectively uint, int and float vtk type.
Args:
- multiBlockMesh (vtkMultiBlockDataSet | vtkCompositeDataSet | vtkDataObject):
- multiBlockMesh where to fill the attribute
- onPoints (bool, optional): Attribute is on Points (False) or
- on Cells.
-
- Defaults to False.
+ multiBlockDataSet (vtkMultiBlockDataSet | vtkCompositeDataSet | vtkDataObject): MultiBlockDataSet where to fill attributes.
+ logger (Union[Logger, None], optional): A logger to manage the output messages.
+ Defaults to None, an internal logger is used.
Returns:
- bool: True if calculation successfully ended, False otherwise
+ bool: True if attributes were correctly created and filled, False if not.
"""
- attributes: dict[ str, int ] = getAttributesWithNumberOfComponents( multiBlockMesh, onPoints )
- for attributeName, nbComponents in attributes.items():
- fillPartialAttributes( multiBlockMesh, attributeName, nbComponents, onPoints )
- multiBlockMesh.Modified()
+ # Check if an external logger is given.
+ if logger is None:
+ logger = getLogger( "fillAllPartialAttributes", True )
+
+ # Parse all partial attributes, onPoints and onCells to fill them.
+ for onPoints in [ True, False ]:
+ infoAttributes: dict[ str, int ] = getAttributesWithNumberOfComponents( multiBlockDataSet, onPoints )
+ for attributeName in infoAttributes:
+ if not isAttributeGlobal( multiBlockDataSet, attributeName, onPoints ) and \
+ not fillPartialAttributes( multiBlockDataSet, attributeName, onPoints, logger=logger ):
+ return False
+
return True
def createEmptyAttribute(
attributeName: str,
componentNames: tuple[ str, ...],
- dataType: int,
+ vtkDataType: int,
) -> vtkDataArray:
"""Create an empty attribute.
Args:
- attributeName (str): name of the attribute
- componentNames (tuple[str,...]): name of the components for vectorial
- attributes
- dataType (int): data type.
+ attributeName (str): Name of the attribute
+ componentNames (tuple[str,...]): Name of the components for vectorial attributes.
+ vtkDataType (int): Data type.
Returns:
- bool: True if the attribute was correctly created
+ vtkDataArray: The empty attribute.
"""
- # create empty array
- newAttr: vtkDataArray
- if dataType == VTK_DOUBLE:
- newAttr = vtkDoubleArray()
- elif dataType == VTK_FLOAT:
- newAttr = vtkFloatArray()
- elif dataType == VTK_INT:
- newAttr = vtkIntArray()
- elif dataType == VTK_UNSIGNED_INT:
- newAttr = vtkUnsignedIntArray()
- elif dataType == VTK_CHAR:
- newAttr = vtkCharArray()
- else:
- raise ValueError( "Attribute type is unknown." )
+ # Check if the vtk data type is correct.
+ vtkNumpyTypeMap: dict[ int, type ] = vnp.get_vtk_to_numpy_typemap()
+ assert vtkDataType in vtkNumpyTypeMap, f"Attribute type { vtkDataType } is unknown. The empty attribute { attributeName } has not been created into the mesh."
+
+ nbComponents: int = len( componentNames )
- newAttr.SetName( attributeName )
- newAttr.SetNumberOfComponents( len( componentNames ) )
- if len( componentNames ) > 1:
- for i in range( len( componentNames ) ):
- newAttr.SetComponentName( i, componentNames[ i ] )
+ createdAttribute: vtkDataArray = vtkDataArray.CreateDataArray( vtkDataType )
+ createdAttribute.SetName( attributeName )
+ createdAttribute.SetNumberOfComponents( nbComponents )
+ if nbComponents > 1:
+ for i in range( nbComponents ):
+ createdAttribute.SetComponentName( i, componentNames[ i ] )
- return newAttr
+ return createdAttribute
def createConstantAttribute(
object: Union[ vtkMultiBlockDataSet, vtkCompositeDataSet, vtkDataObject ],
- values: list[ float ],
+ listValues: list[ Any ],
attributeName: str,
- componentNames: tuple[ str, ...],
- onPoints: bool,
+ componentNames: tuple[ str, ...] = (), # noqa: C408
+ onPoints: bool = False,
+ vtkDataType: Union[ int, None ] = None,
+ logger: Union[ Logger, None ] = None,
) -> bool:
- """Create an attribute with a constant value everywhere if absent.
+ """Create a new attribute with a constant value in the object.
Args:
- object (vtkDataObject): object (vtkMultiBlockDataSet, vtkDataSet)
- where to create the attribute
- values ( list[float]): list of values of the attribute for each components
- attributeName (str): name of the attribute
- componentNames (tuple[str,...]): name of the components for vectorial
- attributes
- onPoints (bool): True if attributes are on points, False if they are
- on cells.
+ object (vtkDataObject): Object (vtkMultiBlockDataSet, vtkDataSet) where to create the attribute.
+ listValues (list[Any]): List of values of the attribute for each components. It is recommended to use numpy scalar type for the values.
+ attributeName (str): Name of the attribute.
+ componentNames (tuple[str,...], optional): Name of the components for vectorial attributes. If one component, gives an empty tuple.
+ Defaults to an empty tuple.
+ onPoints (bool, optional): True if attributes are on points, False if they are on cells.
+ Defaults to False.
+ vtkDataType (Union[int, None], optional): Vtk data type of the attribute to create.
+ Defaults to None, the vtk data type is given by the type of the values.
+
+ Warning with int8, uint8 and int64 type of value, the corresponding vtk data type are multiples. By default:
+ - int8 -> VTK_SIGNED_CHAR
+ - uint8 -> VTK_UNSIGNED_CHAR
+ - int64 -> VTK_LONG_LONG
+ logger (Union[Logger, None], optional): A logger to manage the output messages.
+ Defaults to None, an internal logger is used.
Returns:
- bool: True if the attribute was correctly created
+ bool: True if the attribute was correctly created, False if it was not created.
"""
+ # Check if an external logger is given.
+ if logger is None:
+ logger = getLogger( "createConstantAttribute", True )
+
+ # Deals with multiBlocksDataSets.
if isinstance( object, ( vtkMultiBlockDataSet, vtkCompositeDataSet ) ):
- return createConstantAttributeMultiBlock( object, values, attributeName, componentNames, onPoints )
+ return createConstantAttributeMultiBlock( object, listValues, attributeName, componentNames, onPoints,
+ vtkDataType, logger )
+
+ # Deals with dataSets.
elif isinstance( object, vtkDataSet ):
- listAttributes: set[ str ] = getAttributeSet( object, onPoints )
- if attributeName not in listAttributes:
- return createConstantAttributeDataSet( object, values, attributeName, componentNames, onPoints )
- return True
- return False
+ return createConstantAttributeDataSet( object, listValues, attributeName, componentNames, onPoints, vtkDataType,
+ logger )
+
+ else:
+ logger.error( "The mesh has to be inherited from a vtkMultiBlockDataSet or a vtkDataSet" )
+ logger.error( f"The constant attribute { attributeName } has not been created into the mesh." )
+ return False
def createConstantAttributeMultiBlock(
multiBlockDataSet: Union[ vtkMultiBlockDataSet, vtkCompositeDataSet ],
- values: list[ float ],
+ listValues: list[ Any ],
attributeName: str,
- componentNames: tuple[ str, ...],
- onPoints: bool,
+ componentNames: tuple[ str, ...] = (), # noqa: C408
+ onPoints: bool = False,
+ vtkDataType: Union[ int, None ] = None,
+ logger: Union[ Logger, None ] = None,
) -> bool:
- """Create an attribute with a constant value everywhere if absent.
+ """Create a new attribute with a constant value per component on every block of the multiBlockDataSet.
Args:
- multiBlockDataSet (vtkMultiBlockDataSet | vtkCompositeDataSet): vtkMultiBlockDataSet
- where to create the attribute
- values (list[float]): list of values of the attribute for each components
- attributeName (str): name of the attribute
- componentNames (tuple[str,...]): name of the components for vectorial
- attributes
- onPoints (bool): True if attributes are on points, False if they are
- on cells.
+ multiBlockDataSet (vtkMultiBlockDataSet | vtkCompositeDataSet): MultiBlockDataSet where to create the attribute.
+ listValues (list[Any]): List of values of the attribute for each components. It is recommended to use numpy scalar type for the values.
+ attributeName (str): Name of the attribute.
+ componentNames (tuple[str,...], optional): Name of the components for vectorial attributes. If one component, gives an empty tuple.
+ Defaults to an empty tuple.
+ onPoints (bool, optional): True if attributes are on points, False if they are on cells.
+ Defaults to False.
+ vtkDataType (Union[int, None], optional): Vtk data type of the attribute to create.
+ Defaults to None, the vtk data type is given by the type of the values.
+
+ Warning with int8, uint8 and int64 type of value, the corresponding vtk data type are multiples. By default:
+ - int8 -> VTK_SIGNED_CHAR
+ - uint8 -> VTK_UNSIGNED_CHAR
+ - int64 -> VTK_LONG_LONG
+ logger (Union[Logger, None], optional): A logger to manage the output messages.
+ Defaults to None, an internal logger is used.
Returns:
- bool: True if the attribute was correctly created
+ bool: True if the attribute was correctly created, False if it was not created.
"""
- # initialize data object tree iterator
- iter: vtkDataObjectTreeIterator = vtkDataObjectTreeIterator()
- iter.SetDataSet( multiBlockDataSet )
- iter.VisitOnlyLeavesOn()
- iter.GoToFirstItem()
- while iter.GetCurrentDataObject() is not None:
- dataSet: vtkDataSet = vtkDataSet.SafeDownCast( iter.GetCurrentDataObject() )
- listAttributes: set[ str ] = getAttributeSet( dataSet, onPoints )
- if attributeName not in listAttributes:
- createConstantAttributeDataSet( dataSet, values, attributeName, componentNames, onPoints )
- iter.GoToNextItem()
+ # Check if an external logger is given.
+ if logger is None:
+ logger = getLogger( "createConstantAttributeMultiBlock", True )
+
+ # Check if the input mesh is inherited from vtkMultiBlockDataSet.
+ if not isinstance( multiBlockDataSet, vtkMultiBlockDataSet ):
+ logger.error( "Input mesh has to be inherited from vtkMultiBlockDataSet." )
+ logger.error( f"The constant attribute { attributeName } has not been created into the mesh." )
+ return False
+
+ # Check if the attribute already exist in the input mesh.
+ if isAttributeInObjectMultiBlockDataSet( multiBlockDataSet, attributeName, onPoints ):
+ logger.error( f"The attribute { attributeName } is already present in the multiBlockDataSet." )
+ logger.error( f"The constant attribute { attributeName } has not been created into the mesh." )
+ return False
+
+ # Check if an attribute with the same name exist on the opposite piece (points or cells) on the input mesh.
+ oppositePiece: bool = not onPoints
+ oppositePieceName: str = "points" if oppositePiece else "cells"
+ if isAttributeInObjectMultiBlockDataSet( multiBlockDataSet, attributeName, oppositePiece ):
+ oppositePieceState: str = "global" if isAttributeGlobal( multiBlockDataSet, attributeName,
+ oppositePiece ) else "partial"
+ logger.warning(
+ f"A { oppositePieceState } attribute with the same name ({ attributeName }) is already present in the multiBlockDataSet but on { oppositePieceName }."
+ )
+
+ # Parse the multiBlockDataSet to create the constant attribute on each blocks.
+ iterator: vtkDataObjectTreeIterator = vtkDataObjectTreeIterator()
+ iterator.SetDataSet( multiBlockDataSet )
+ iterator.VisitOnlyLeavesOn()
+ iterator.GoToFirstItem()
+ while iterator.GetCurrentDataObject() is not None:
+ dataSet: vtkDataSet = vtkDataSet.SafeDownCast( iterator.GetCurrentDataObject() )
+ if not createConstantAttributeDataSet( dataSet, listValues, attributeName, componentNames, onPoints,
+ vtkDataType, logger ):
+ return False
+
+ iterator.GoToNextItem()
+
return True
def createConstantAttributeDataSet(
dataSet: vtkDataSet,
- values: list[ float ],
+ listValues: list[ Any ],
attributeName: str,
- componentNames: tuple[ str, ...],
- onPoints: bool,
+ componentNames: tuple[ str, ...] = (), # noqa: C408
+ onPoints: bool = False,
+ vtkDataType: Union[ int, None ] = None,
+ logger: Union[ Logger, None ] = None,
) -> bool:
- """Create an attribute with a constant value everywhere.
+ """Create an attribute with a constant value per component in the dataSet.
Args:
- dataSet (vtkDataSet): vtkDataSet where to create the attribute
- values ( list[float]): list of values of the attribute for each components
- attributeName (str): name of the attribute
- componentNames (tuple[str,...]): name of the components for vectorial
- attributes
- onPoints (bool): True if attributes are on points, False if they are
- on cells.
+ dataSet (vtkDataSet): DataSet where to create the attribute.
+ listValues (list[Any]): List of values of the attribute for each components. It is recommended to use numpy scalar type for the values.
+ attributeName (str): Name of the attribute.
+ componentNames (tuple[str,...], optional): Name of the components for vectorial attributes. If one component, gives an empty tuple.
+ Defaults to an empty tuple.
+ onPoints (bool, optional): True if attributes are on points, False if they are on cells.
+ Defaults to False.
+ vtkDataType (Union[int, None], optional): Vtk data type of the attribute to create.
+ Defaults to None, the vtk data type is given by the type of the values.
+
+ Warning with int8, uint8 and int64 type of value, the corresponding vtk data type are multiples. By default:
+ - int8 -> VTK_SIGNED_CHAR
+ - uint8 -> VTK_UNSIGNED_CHAR
+ - int64 -> VTK_LONG_LONG
+ logger (Union[Logger, None], optional): A logger to manage the output messages.
+ Defaults to None, an internal logger is used.
Returns:
- bool: True if the attribute was correctly created
+ bool: True if the attribute was correctly created, False if it was not created.
"""
+ # Check if an external logger is given.
+ if logger is None:
+ logger = getLogger( "createConstantAttributeDataSet", True )
+
+ # Check if all the values of listValues have the same type.
+ valueType: type = type( listValues[ 0 ] )
+ for value in listValues:
+ valueTypeTest: type = type( value )
+ if valueType != valueTypeTest:
+ logger.error( "All values in the list of values don't have the same type." )
+ logger.error( f"The constant attribute { attributeName } has not been created into the mesh." )
+ return False
+
+ # Convert int and float type into numpy scalar type.
+ if valueType in ( int, float ):
+ npType: type = type( np.array( listValues )[ 0 ] )
+ logger.warning(
+ f"During the creation of the constant attribute { attributeName }, values will be converted from { valueType } to { npType }."
+ )
+ logger.warning( "To avoid any issue with the conversion, please use directly numpy scalar type for the values" )
+ valueType = npType
+
+ # Check the consistency between the given value type and the vtk array type if it exists.
+ valueType = valueType().dtype
+ if vtkDataType is not None:
+ vtkNumpyTypeMap: dict[ int, type ] = vnp.get_vtk_to_numpy_typemap()
+ if vtkDataType not in vtkNumpyTypeMap:
+ logger.error( f"The vtk data type { vtkDataType } is unknown." )
+ logger.error( f"The constant attribute { attributeName } has not been created into the mesh." )
+ return False
+ npArrayTypeFromVtk: npt.DTypeLike = vtkNumpyTypeMap[ vtkDataType ]().dtype
+ if npArrayTypeFromVtk != valueType:
+ logger.error(
+ f"Values type { valueType } is not coherent with the type of array created ({ npArrayTypeFromVtk }) from the given vtkDataType."
+ )
+ logger.error( f"The constant attribute { attributeName } has not been created into the mesh." )
+ return False
+
+ # Create the numpy array constant per component.
+ nbComponents: int = len( listValues )
nbElements: int = ( dataSet.GetNumberOfPoints() if onPoints else dataSet.GetNumberOfCells() )
- nbComponents: int = len( values )
- array: npt.NDArray[ np.float64 ] = np.ones( ( nbElements, nbComponents ) )
- for i, val in enumerate( values ):
- array[ :, i ] *= val
- createAttribute( dataSet, array, attributeName, componentNames, onPoints )
- return True
+ npArray: npt.NDArray[ Any ]
+ if nbComponents > 1:
+ npArray = np.array( [ listValues for _ in range( nbElements ) ], valueType )
+ else:
+ npArray = np.array( [ listValues[ 0 ] for _ in range( nbElements ) ], valueType )
+
+ return createAttribute( dataSet, npArray, attributeName, componentNames, onPoints, vtkDataType, logger )
def createAttribute(
dataSet: vtkDataSet,
- array: npt.NDArray[ np.float64 ],
+ npArray: npt.NDArray[ Any ],
attributeName: str,
- componentNames: tuple[ str, ...],
- onPoints: bool,
+ componentNames: tuple[ str, ...] = (), # noqa: C408
+ onPoints: bool = False,
+ vtkDataType: Union[ int, None ] = None,
+ logger: Union[ Logger, None ] = None,
) -> bool:
- """Create an attribute from the given array.
+ """Create an attribute from the given numpy array.
Args:
- dataSet (vtkDataSet): dataSet where to create the attribute
- array (npt.NDArray[np.float64]): array that contains the values
- attributeName (str): name of the attribute
- componentNames (tuple[str,...]): name of the components for vectorial
- attributes
- onPoints (bool): True if attributes are on points, False if they are
- on cells.
+ dataSet (vtkDataSet): DataSet where to create the attribute.
+ npArray (NDArray[Any]): Array that contains the values.
+ attributeName (str): Name of the attribute.
+ componentNames (tuple[str,...], optional): Name of the components for vectorial attributes. If one component, gives an empty tuple.
+ Defaults to an empty tuple.
+ onPoints (bool, optional): True if attributes are on points, False if they are on cells.
+ Defaults to False.
+ vtkDataType (Union[int, None], optional): Vtk data type of the attribute to create.
+ Defaults to None, the vtk data type is given by the type of the array.
+
+ Warning with int8, uint8 and int64 type, the corresponding vtk data type are multiples. By default:
+ - int8 -> VTK_SIGNED_CHAR
+ - uint8 -> VTK_UNSIGNED_CHAR
+ - int64 -> VTK_LONG_LONG
+ logger (Union[Logger, None], optional): A logger to manage the output messages.
+ Defaults to None, an internal logger is used.
Returns:
- bool: True if the attribute was correctly created
+ bool: True if the attribute was correctly created, False if it was not created.
"""
- assert isinstance( dataSet, vtkDataSet ), "Attribute can only be created in vtkDataSet object."
+ # Check if an external logger is given.
+ if logger is None:
+ logger = getLogger( "createAttribute", True )
+
+ # Check if the input mesh is inherited from vtkDataSet.
+ if not isinstance( dataSet, vtkDataSet ):
+ logger.error( "Input mesh has to be inherited from vtkDataSet." ) # type: ignore[unreachable]
+ logger.error( f"The attribute { attributeName } has not been created into the mesh." )
+ return False
+
+ # Check if the attribute already exist in the input mesh.
+ if isAttributeInObjectDataSet( dataSet, attributeName, onPoints ):
+ logger.error( f"The attribute { attributeName } is already present in the dataSet." )
+ logger.error( f"The attribute { attributeName } has not been created into the mesh." )
+ return False
- newAttr: vtkDataArray = vnp.numpy_to_vtk( array, deep=True, array_type=VTK_DOUBLE )
- newAttr.SetName( attributeName )
+ # Check the coherency between the given array type and the vtk array type if it exist.
+ if vtkDataType is not None:
+ vtkNumpyTypeMap: dict[ int, type ] = vnp.get_vtk_to_numpy_typemap()
+ if vtkDataType not in vtkNumpyTypeMap:
+ logger.error( f"The vtk data type { vtkDataType } is unknown." )
+ logger.error( f"The attribute { attributeName } has not been created into the mesh." )
+ return False
+ npArrayTypeFromVtk: npt.DTypeLike = vtkNumpyTypeMap[ vtkDataType ]().dtype
+ npArrayTypeFromInput: npt.DTypeLike = npArray.dtype
+ if npArrayTypeFromVtk != npArrayTypeFromInput:
+ logger.error(
+ f"The numpy array type { npArrayTypeFromInput } is not coherent with the type of array created ({ npArrayTypeFromVtk }) from the given vtkDataType."
+ )
+ logger.error( f"The attribute { attributeName } has not been created into the mesh." )
+ return False
+
+ data: Union[ vtkPointData, vtkCellData ]
+ nbElements: int
+ oppositePieceName: str
+ if onPoints:
+ data = dataSet.GetPointData()
+ nbElements = dataSet.GetNumberOfPoints()
+ oppositePieceName = "cells"
+ else:
+ data = dataSet.GetCellData()
+ nbElements = dataSet.GetNumberOfCells()
+ oppositePieceName = "points"
+
+ # Check if the input array has the good size.
+ if len( npArray ) != nbElements:
+ logger.error( f"The array has to have { nbElements } elements, but have only { len( npArray ) } elements" )
+ logger.error( f"The attribute { attributeName } has not been created into the mesh." )
+ return False
+
+ # Check if an attribute with the same name exist on the opposite piece (points or cells).
+ oppositePiece: bool = not onPoints
+ if isAttributeInObjectDataSet( dataSet, attributeName, oppositePiece ):
+ logger.warning(
+ f"An attribute with the same name ({ attributeName }) is already present in the dataSet but on { oppositePieceName }."
+ )
+
+ # Convert the numpy array int a vtkDataArray.
+ createdAttribute: vtkDataArray = vnp.numpy_to_vtk( npArray, deep=True, array_type=vtkDataType )
+ createdAttribute.SetName( attributeName )
+
+ nbComponents: int = createdAttribute.GetNumberOfComponents()
+ nbNames: int = len( componentNames )
+ if nbComponents == 1 and nbNames > 0:
+ logger.warning(
+ "The array has one component and no name, the components names you have enter will not be taking into account."
+ )
- nbComponents: int = newAttr.GetNumberOfComponents()
if nbComponents > 1:
+ if nbNames < nbComponents:
+ componentNames = tuple( [ "Component" + str( i ) for i in range( nbComponents ) ] )
+ logger.warning(
+ f"Insufficient number of input component names. { attributeName } component names will be set to : Component0, Component1 ..."
+ )
+ elif nbNames > nbComponents:
+ logger.warning(
+ f"Excessive number of input component names, only the first { nbComponents } names will be used." )
+
for i in range( nbComponents ):
- newAttr.SetComponentName( i, componentNames[ i ] )
+ createdAttribute.SetComponentName( i, componentNames[ i ] )
+
+ data.AddArray( createdAttribute )
+ data.Modified()
- if onPoints:
- dataSet.GetPointData().AddArray( newAttr )
- else:
- dataSet.GetCellData().AddArray( newAttr )
- dataSet.Modified()
return True
def copyAttribute(
- objectFrom: vtkMultiBlockDataSet,
- objectTo: vtkMultiBlockDataSet,
- attributNameFrom: str,
- attributNameTo: str,
+ multiBlockDataSetFrom: vtkMultiBlockDataSet,
+ multiBlockDataSetTo: vtkMultiBlockDataSet,
+ attributeNameFrom: str,
+ attributeNameTo: str,
+ onPoints: bool = False,
+ logger: Union[ Logger, None ] = None,
) -> bool:
- """Copy a cell attribute from objectFrom to objectTo.
+ """Copy an attribute from a multiBlockDataSet to a similar one on the same piece.
Args:
- objectFrom (vtkMultiBlockDataSet): object from which to copy the attribute.
- objectTo (vtkMultiBlockDataSet): object where to copy the attribute.
- attributNameFrom (str): attribute name in objectFrom.
- attributNameTo (str): attribute name in objectTo.
+ multiBlockDataSetFrom (vtkMultiBlockDataSet): MultiBlockDataSet from which to copy the attribute.
+ multiBlockDataSetTo (vtkMultiBlockDataSet): MultiBlockDataSet where to copy the attribute.
+ attributeNameFrom (str): Attribute name in multiBlockDataSetFrom.
+ attributeNameTo (str): Attribute name in multiBlockDataSetTo. It will be a new attribute of multiBlockDataSetTo.
+ onPoints (bool, optional): True if attributes are on points, False if they are on cells.
+ Defaults to False.
+ logger (Union[Logger, None], optional): A logger to manage the output messages.
+ Defaults to None, an internal logger is used.
Returns:
- bool: True if copy successfully ended, False otherwise
+ bool: True if copy successfully ended, False otherwise.
"""
- elementaryBlockIndexesTo: list[ int ] = getBlockElementIndexesFlatten( objectTo )
- elementaryBlockIndexesFrom: list[ int ] = getBlockElementIndexesFlatten( objectFrom )
-
- assert elementaryBlockIndexesTo == elementaryBlockIndexesFrom, (
- "ObjectFrom " + "and objectTo do not have the same block indexes." )
-
- for index in elementaryBlockIndexesTo:
- # get block from initial time step object
- blockT0: vtkDataSet = vtkDataSet.SafeDownCast( getBlockFromFlatIndex( objectFrom, index ) )
- assert blockT0 is not None, "Block at initial time step is null."
-
- # get block from current time step object
- block: vtkDataSet = vtkDataSet.SafeDownCast( getBlockFromFlatIndex( objectTo, index ) )
- assert block is not None, "Block at current time step is null."
- try:
- copyAttributeDataSet( blockT0, block, attributNameFrom, attributNameTo )
- except AssertionError:
- # skip attribute if not in block
- continue
+ # Check if an external logger is given.
+ if logger is None:
+ logger = getLogger( "copyAttribute", True )
+
+ # Check if the multiBlockDataSetFrom is inherited from vtkMultiBlockDataSet.
+ if not isinstance( multiBlockDataSetFrom, vtkMultiBlockDataSet ):
+ logger.error( # type: ignore[unreachable]
+ "multiBlockDataSetFrom has to be inherited from vtkMultiBlockDataSet." )
+ logger.error( f"The attribute { attributeNameFrom } has not been copied." )
+ return False
+
+ # Check if the multiBlockDataSetTo is inherited from vtkMultiBlockDataSet.
+ if not isinstance( multiBlockDataSetTo, vtkMultiBlockDataSet ):
+ logger.error( # type: ignore[unreachable]
+ "multiBlockDataSetTo has to be inherited from vtkMultiBlockDataSet." )
+ logger.error( f"The attribute { attributeNameFrom } has not been copied." )
+ return False
+
+ # Check if the attribute exist in the multiBlockDataSetFrom.
+ if not isAttributeInObjectMultiBlockDataSet( multiBlockDataSetFrom, attributeNameFrom, onPoints ):
+ logger.error( f"The attribute { attributeNameFrom } is not in the multiBlockDataSetFrom." )
+ logger.error( f"The attribute { attributeNameFrom } has not been copied." )
+ return False
+
+ # Check if the attribute already exist in the multiBlockDataSetTo.
+ if isAttributeInObjectMultiBlockDataSet( multiBlockDataSetTo, attributeNameTo, onPoints ):
+ logger.error( f"The attribute { attributeNameTo } is already in the multiBlockDataSetTo." )
+ logger.error( f"The attribute { attributeNameFrom } has not been copied." )
+ return False
+
+ # Check if the two multiBlockDataSets are similar.
+ elementaryBlockIndexesTo: list[ int ] = getBlockElementIndexesFlatten( multiBlockDataSetTo )
+ elementaryBlockIndexesFrom: list[ int ] = getBlockElementIndexesFlatten( multiBlockDataSetFrom )
+ if elementaryBlockIndexesTo != elementaryBlockIndexesFrom:
+ logger.error( "multiBlockDataSetFrom and multiBlockDataSetTo do not have the same block indexes." )
+ logger.error( f"The attribute { attributeNameFrom } has not been copied." )
+ return False
+
+ # Parse blocks of the two mesh to copy the attribute.
+ for idBlock in elementaryBlockIndexesTo:
+ dataSetFrom: vtkDataSet = vtkDataSet.SafeDownCast( getBlockFromFlatIndex( multiBlockDataSetFrom, idBlock ) )
+ if dataSetFrom is None:
+ logger.error( f"Block { idBlock } of multiBlockDataSetFrom is null." ) # type: ignore[unreachable]
+ logger.error( f"The attribute { attributeNameFrom } has not been copied." )
+ return False
+
+ dataSetTo: vtkDataSet = vtkDataSet.SafeDownCast( getBlockFromFlatIndex( multiBlockDataSetTo, idBlock ) )
+ if dataSetTo is None:
+ logger.error( f"Block { idBlock } of multiBlockDataSetTo is null." ) # type: ignore[unreachable]
+ logger.error( f"The attribute { attributeNameFrom } has not been copied." )
+ return False
+
+ if isAttributeInObjectDataSet( dataSetFrom, attributeNameFrom, onPoints ) and \
+ not copyAttributeDataSet( dataSetFrom, dataSetTo, attributeNameFrom, attributeNameTo, onPoints, logger ):
+ return False
+
return True
def copyAttributeDataSet(
- objectFrom: vtkDataSet,
- objectTo: vtkDataSet,
- attributNameFrom: str,
- attributNameTo: str,
+ dataSetFrom: vtkDataSet,
+ dataSetTo: vtkDataSet,
+ attributeNameFrom: str,
+ attributeNameTo: str,
+ onPoints: bool = False,
+ logger: Union[ Logger, Any ] = None,
) -> bool:
- """Copy a cell attribute from objectFrom to objectTo.
+ """Copy an attribute from a dataSet to a similar one on the same piece.
Args:
- objectFrom (vtkDataSet): object from which to copy the attribute.
- objectTo (vtkDataSet): object where to copy the attribute.
- attributNameFrom (str): attribute name in objectFrom.
- attributNameTo (str): attribute name in objectTo.
+ dataSetFrom (vtkDataSet): DataSet from which to copy the attribute.
+ dataSetTo (vtkDataSet): DataSet where to copy the attribute.
+ attributeNameFrom (str): Attribute name in dataSetFrom.
+ attributeNameTo (str): Attribute name in dataSetTo. It will be a new attribute of dataSetTo.
+ onPoints (bool, optional): True if attributes are on points, False if they are on cells.
+ Defaults to False.
+ logger (Union[Logger, None], optional): A logger to manage the output messages.
+ Defaults to None, an internal logger is used.
Returns:
- bool: True if copy successfully ended, False otherwise
+ bool: True if copy successfully ended, False otherwise.
"""
- # get attribut from initial time step block
- npArray: npt.NDArray[ np.float64 ] = getArrayInObject( objectFrom, attributNameFrom, False )
- assert npArray is not None
- componentNames: tuple[ str, ...] = getComponentNames( objectFrom, attributNameFrom, False )
- # copy attribut to current time step block
- createAttribute( objectTo, npArray, attributNameTo, componentNames, False )
- objectTo.Modified()
- return True
+ # Check if an external logger is given.
+ if logger is None:
+ logger = getLogger( "copyAttributeDataSet", True )
+
+ # Check if the dataSetFrom is inherited from vtkDataSet.
+ if not isinstance( dataSetFrom, vtkDataSet ):
+ logger.error( "dataSetFrom has to be inherited from vtkDataSet." ) # type: ignore[unreachable]
+ logger.error( f"The attribute { attributeNameFrom } has not been copied." )
+ return False
+
+ # Check if the dataSetTo is inherited from vtkDataSet.
+ if not isinstance( dataSetTo, vtkDataSet ):
+ logger.error( "dataSetTo has to be inherited from vtkDataSet." ) # type: ignore[unreachable]
+ logger.error( f"The attribute { attributeNameFrom } has not been copied." )
+ return False
+
+ # Check if the attribute exist in the dataSetFrom.
+ if not isAttributeInObjectDataSet( dataSetFrom, attributeNameFrom, onPoints ):
+ logger.error( f"The attribute { attributeNameFrom } is not in the dataSetFrom." )
+ logger.error( f"The attribute { attributeNameFrom } has not been copied." )
+ return False
+
+ # Check if the attribute already exist in the dataSetTo.
+ if isAttributeInObjectDataSet( dataSetTo, attributeNameTo, onPoints ):
+ logger.error( f"The attribute { attributeNameTo } is already in the dataSetTo." )
+ logger.error( f"The attribute { attributeNameFrom } has not been copied." )
+ return False
+
+ npArray: npt.NDArray[ Any ] = getArrayInObject( dataSetFrom, attributeNameFrom, onPoints )
+ componentNames: tuple[ str, ...] = getComponentNamesDataSet( dataSetFrom, attributeNameFrom, onPoints )
+ vtkArrayType: int = getVtkArrayTypeInObject( dataSetFrom, attributeNameFrom, onPoints )
+
+ return createAttribute( dataSetTo, npArray, attributeNameTo, componentNames, onPoints, vtkArrayType, logger )
def renameAttribute(
@@ -345,9 +685,9 @@ def renameAttribute(
"""Rename an attribute.
Args:
- object (vtkMultiBlockDataSet): object where the attribute is
- attributeName (str): name of the attribute
- newAttributeName (str): new name of the attribute
+ object (vtkMultiBlockDataSet): Object where the attribute is.
+ attributeName (str): Name of the attribute.
+ newAttributeName (str): New name of the attribute.
onPoints (bool): True if attributes are on points, False if they are on cells.
Returns:
@@ -382,14 +722,14 @@ def createCellCenterAttribute( mesh: Union[ vtkMultiBlockDataSet, vtkDataSet ],
ret: int = 1
if isinstance( mesh, vtkMultiBlockDataSet ):
# initialize data object tree iterator
- iter: vtkDataObjectTreeIterator = vtkDataObjectTreeIterator()
- iter.SetDataSet( mesh )
- iter.VisitOnlyLeavesOn()
- iter.GoToFirstItem()
- while iter.GetCurrentDataObject() is not None:
- block: vtkDataSet = vtkDataSet.SafeDownCast( iter.GetCurrentDataObject() )
+ iterator: vtkDataObjectTreeIterator = vtkDataObjectTreeIterator()
+ iterator.SetDataSet( mesh )
+ iterator.VisitOnlyLeavesOn()
+ iterator.GoToFirstItem()
+ while iterator.GetCurrentDataObject() is not None:
+ block: vtkDataSet = vtkDataSet.SafeDownCast( iterator.GetCurrentDataObject() )
ret *= int( doCreateCellCenterAttribute( block, cellCenterAttributeName ) )
- iter.GoToNextItem()
+ iterator.GoToNextItem()
elif isinstance( mesh, vtkDataSet ):
ret = int( doCreateCellCenterAttribute( mesh, cellCenterAttributeName ) )
else:
@@ -401,7 +741,7 @@ def doCreateCellCenterAttribute( block: vtkDataSet, cellCenterAttributeName: str
"""Create elementCenter attribute in a vtkDataSet if it does not exist.
Args:
- block (vtkDataSet): input mesh that must be a vtkDataSet
+ block (vtkDataSet): Input mesh that must be a vtkDataSet
cellCenterAttributeName (str): Name of the attribute
Returns:
@@ -414,7 +754,7 @@ def doCreateCellCenterAttribute( block: vtkDataSet, cellCenterAttributeName: str
filter.Update()
output: vtkPointSet = filter.GetOutputDataObject( 0 )
assert output is not None, "vtkCellCenters output is null."
- # transfer output to ouput arrays
+ # transfer output to output arrays
centers: vtkPoints = output.GetPoints()
assert centers is not None, "Center are undefined."
centerCoords: vtkDataArray = centers.GetData()
diff --git a/geos-mesh/src/geos/mesh/utils/multiblockModifiers.py b/geos-mesh/src/geos/mesh/utils/multiblockModifiers.py
index ebbf2100..5f00afb8 100644
--- a/geos-mesh/src/geos/mesh/utils/multiblockModifiers.py
+++ b/geos-mesh/src/geos/mesh/utils/multiblockModifiers.py
@@ -29,8 +29,7 @@ def mergeBlocks(
"""
if keepPartialAttributes:
- fillAllPartialAttributes( input, False )
- fillAllPartialAttributes( input, True )
+ fillAllPartialAttributes( input )
af = vtkAppendDataSets()
af.MergePointsOn()
diff --git a/geos-mesh/tests/conftest.py b/geos-mesh/tests/conftest.py
index 56a1de08..9cff83d5 100644
--- a/geos-mesh/tests/conftest.py
+++ b/geos-mesh/tests/conftest.py
@@ -5,7 +5,7 @@
# ruff: noqa: E402 # disable Module level import not at top of file
import os
import pytest
-from typing import Union
+from typing import Union, Any
import numpy as np
import numpy.typing as npt
@@ -15,6 +15,7 @@
@pytest.fixture
def arrayExpected( request: pytest.FixtureRequest ) -> npt.NDArray[ np.float64 ]:
+ """Get an array from a file."""
reference_data = "data/data.npz"
reference_data_path = os.path.join( os.path.dirname( os.path.realpath( __file__ ) ), reference_data )
data = np.load( reference_data_path )
@@ -24,6 +25,7 @@ def arrayExpected( request: pytest.FixtureRequest ) -> npt.NDArray[ np.float64 ]
@pytest.fixture
def arrayTest( request: pytest.FixtureRequest ) -> npt.NDArray[ np.float64 ]:
+ """Get a random array of float64."""
np.random.seed( 42 )
array: npt.NDArray[ np.float64 ] = np.random.rand(
request.param,
@@ -33,22 +35,150 @@ def arrayTest( request: pytest.FixtureRequest ) -> npt.NDArray[ np.float64 ]:
@pytest.fixture
-def dataSetTest() -> Union[ vtkMultiBlockDataSet, vtkPolyData, vtkDataSet ]:
+def getArrayWithSpeTypeValue() -> Any:
+ """Get a random array of input type with the function _getarray().
- def _get_dataset( datasetType: str ):
+ Returns:
+ npt.NDArray[Any]: Random array of input type.
+ """
+
+ def _getarray( nb_component: int, nb_elements: int, valueType: str ) -> Any:
+ """Get a random array of input type.
+
+ Args:
+ nb_component (int): Number of components.
+ nb_elements (int): Number of elements.
+ valueType (str): The type of the value.
+
+ Returns:
+ npt.NDArray[Any]: Random array of input type.
+ """
+ np.random.seed( 28 )
+ if valueType == "int8":
+ if nb_component == 1:
+ return np.array( [ np.int8( 10 * np.random.random() ) for _ in range( nb_elements ) ] )
+ else:
+ return np.array( [ [ np.int8( 10 * np.random.random() ) for _ in range( nb_component ) ]
+ for _ in range( nb_elements ) ] )
+
+ elif valueType == "int16":
+ if nb_component == 1:
+ return np.array( [ np.int16( 1000 * np.random.random() ) for _ in range( nb_elements ) ] )
+ else:
+ return np.array( [ [ np.int16( 1000 * np.random.random() ) for _ in range( nb_component ) ]
+ for _ in range( nb_elements ) ] )
+
+ elif valueType == "int32":
+ if nb_component == 1:
+ return np.array( [ np.int32( 1000 * np.random.random() ) for _ in range( nb_elements ) ] )
+ else:
+ return np.array( [ [ np.int32( 1000 * np.random.random() ) for _ in range( nb_component ) ]
+ for _ in range( nb_elements ) ] )
+
+ elif valueType == "int64":
+ if nb_component == 1:
+ return np.array( [ np.int64( 1000 * np.random.random() ) for _ in range( nb_elements ) ] )
+ else:
+ return np.array( [ [ np.int64( 1000 * np.random.random() ) for _ in range( nb_component ) ]
+ for _ in range( nb_elements ) ] )
+
+ if valueType == "uint8":
+ if nb_component == 1:
+ return np.array( [ np.uint8( 10 * np.random.random() ) for _ in range( nb_elements ) ] )
+ else:
+ return np.array( [ [ np.uint8( 10 * np.random.random() ) for _ in range( nb_component ) ]
+ for _ in range( nb_elements ) ] )
+
+ elif valueType == "uint16":
+ if nb_component == 1:
+ return np.array( [ np.uint16( 1000 * np.random.random() ) for _ in range( nb_elements ) ] )
+ else:
+ return np.array( [ [ np.uint16( 1000 * np.random.random() ) for _ in range( nb_component ) ]
+ for _ in range( nb_elements ) ] )
+
+ elif valueType == "uint32":
+ if nb_component == 1:
+ return np.array( [ np.uint32( 1000 * np.random.random() ) for _ in range( nb_elements ) ] )
+ else:
+ return np.array( [ [ np.uint32( 1000 * np.random.random() ) for _ in range( nb_component ) ]
+ for _ in range( nb_elements ) ] )
+
+ elif valueType == "uint64":
+ if nb_component == 1:
+ return np.array( [ np.uint64( 1000 * np.random.random() ) for _ in range( nb_elements ) ] )
+ else:
+ return np.array( [ [ np.uint64( 1000 * np.random.random() ) for _ in range( nb_component ) ]
+ for _ in range( nb_elements ) ] )
+
+ elif valueType == "int":
+ if nb_component == 1:
+ return np.array( [ int( 1000 * np.random.random() ) for _ in range( nb_elements ) ] )
+ else:
+ return np.array( [ [ int( 1000 * np.random.random() ) for _ in range( nb_component ) ]
+ for _ in range( nb_elements ) ] )
+
+ elif valueType == "float":
+ if nb_component == 1:
+ return np.array( [ float( 1000 * np.random.random() ) for _ in range( nb_elements ) ] )
+ else:
+ return np.array( [ [ float( 1000 * np.random.random() ) for _ in range( nb_component ) ]
+ for _ in range( nb_elements ) ] )
+
+ elif valueType == "float32":
+ if nb_component == 1:
+ return np.array( [ np.float32( 1000 * np.random.random() ) for _ in range( nb_elements ) ] )
+ else:
+ return np.array( [ [ np.float32( 1000 * np.random.random() ) for _ in range( nb_component ) ]
+ for _ in range( nb_elements ) ] )
+
+ elif valueType == "float64":
+ if nb_component == 1:
+ return np.array( [ np.float64( 1000 * np.random.random() ) for _ in range( nb_elements ) ] )
+ else:
+ return np.array( [ [ np.float64( 1000 * np.random.random() ) for _ in range( nb_component ) ]
+ for _ in range( nb_elements ) ] )
+
+ return _getarray
+
+
+@pytest.fixture
+def dataSetTest() -> Any:
+ """Get a vtkObject from a file with the function _get_dataset().
+
+ Returns:
+ (vtkMultiBlockDataSet, vtkPolyData, vtkDataSet): The vtk object.
+ """
+
+ def _get_dataset( datasetType: str ) -> Union[ vtkMultiBlockDataSet, vtkPolyData, vtkDataSet ]:
+ """Get a vtkObject from a file.
+
+ Args:
+ datasetType (str): The type of vtk object wanted.
+
+ Returns:
+ (vtkMultiBlockDataSet, vtkPolyData, vtkDataSet): The vtk object.
+ """
+ reader: Union[ vtkXMLMultiBlockDataReader, vtkXMLUnstructuredGridReader ]
if datasetType == "multiblock":
- reader = reader = vtkXMLMultiBlockDataReader()
+ reader = vtkXMLMultiBlockDataReader()
vtkFilename = "data/displacedFault.vtm"
+ elif datasetType == "emptymultiblock":
+ reader = vtkXMLMultiBlockDataReader()
+ vtkFilename = "data/displacedFaultempty.vtm"
elif datasetType == "dataset":
- reader: vtkXMLUnstructuredGridReader = vtkXMLUnstructuredGridReader()
+ reader = vtkXMLUnstructuredGridReader()
vtkFilename = "data/domain_res5_id.vtu"
+ elif datasetType == "emptydataset":
+ reader = vtkXMLUnstructuredGridReader()
+ vtkFilename = "data/domain_res5_id_empty.vtu"
elif datasetType == "polydata":
- reader: vtkXMLUnstructuredGridReader = vtkXMLUnstructuredGridReader()
+ reader = vtkXMLUnstructuredGridReader()
vtkFilename = "data/surface.vtu"
+
datapath: str = os.path.join( os.path.dirname( os.path.realpath( __file__ ) ), vtkFilename )
reader.SetFileName( datapath )
reader.Update()
return reader.GetOutput()
- return _get_dataset
\ No newline at end of file
+ return _get_dataset
diff --git a/geos-mesh/tests/data/displacedFaultempty.vtm b/geos-mesh/tests/data/displacedFaultempty.vtm
new file mode 100644
index 00000000..20ff57fb
--- /dev/null
+++ b/geos-mesh/tests/data/displacedFaultempty.vtm
@@ -0,0 +1,7 @@
+
+
+
+
+
+
+
diff --git a/geos-mesh/tests/data/domain_res5_id_empty.vtu b/geos-mesh/tests/data/domain_res5_id_empty.vtu
new file mode 100644
index 00000000..94b5c796
--- /dev/null
+++ b/geos-mesh/tests/data/domain_res5_id_empty.vtu
@@ -0,0 +1,39 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ 0
+
+
+ 3221.0246817
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ _AQAAAACAAADgfwAARhgAAA==eJw13dMWIMqSBcDbtm3btm3btm3btm3btm3b9ul5mOh6iU+olVWZO//3v/8/ARiQgRiYQRiUwRicIRiSoRiaYRiW4RieERiRkRiZURiV0RidMRiTsRibcRiX8RifCZiQiZiYSZiUyZicKZiSqZiaaZiW6ZieGZiRmZiZWZiV2ZidOZiTuZibeZiX+ZifBViQhViYRViUxVicJViSpViaZViW5VieFViRlViZVViV1VidNViTtVibdViX9VifDdiQjdiYTdiUzdicLdiSrdiabdiW7dieHdiRndiZXdiV3didPdiTvdibfdiX/difAziQgziYQziUwzicIziSoziaYziW4zieEziRkziZUziV0zidMziTszibcziX8zifC7iQi7iYS7iUy7icK7iSq7iaa7iW67ieG7iRm7iZW7iV27idO7iTu7ibe7iX+7ifB3iQh3iYR3iUx3icJ3iSp3iaZ3iW53ieF3iRl3iZV3iV13idN3iTt3ibd3iX93ifD/iQj/iYT/iUz/icL/iSr/iab/iW7/ieH/iRn/iZX/iV3/idP/iTv/ibf/gf//LfxR+AARmIgRmEQRmMwRmCIRmKoRmGYRmO4RmBERmJkRmFURmN0RmDMRmLsRmHcRmP8ZmACZmIiZmESZmMyZmCKZmKqZmGaZmO6ZmBGZmJmZmFWZmN2ZmDOZmLuZmHeZmP+VmABVmIhVmERVmMxVmCJVmKpVmGZVmO5VmBFVmJlVmFVVmN1VmDNVmLtVmHdVmP9dmADdmIjdmETdmMzdmCLdmKrdmGbdmO7dmBHdmJndmFXdmN3dmDPdmLvdmHfdmP/TmAAzmIgzmEQzmMwzmCIzmKozmGYzmO4zmBEzmJkzmFUzmN0zmDMzmLszmHczmP87mAC7mIi7mES7mMy7mCK7mKq7mGa7mO67mBG7mJm7mFW7mN27mDO7mLu7mHe7mP+3mAB3mIh3mER3mMx3mCJ3mKp3mGZ3mO53mBF3mJl3mFV3mN13mDN3mLt3mHd3mP9/mAD/mIj/mET/mMz/mCL/mKr/mGb/mO7/mBH/mJn/mFX/mN3/mDP/mLv/mH//Ev/xX8ARiQgRiYQRiUwRicIRiSoRiaYRiW4RieERiRkRiZURiV0RidMRiTsRibcRiX8RifCZiQiZiYSZiUyZicKZiSqZiaaZiW6ZieGZiRmZiZWZiV2ZidOZiTuZibeZiX+ZifBViQhViYRViUxVicJViSpViaZViW5VieFViRlViZVViV1VidNViTtVibdViX9VifDdiQjdiYTdiUzdicLdiSrdiabdiW7dieHdiRndiZXdiV3didPdiTvdibfdiX/difAziQgziYQziUwzicIziSoziaYziW4zieEziRkziZUziV0zidMziTszibcziX8zifC7iQi7iYS7iUy7icK7iSq7iaa7iW67ieG7iRm7iZW7iV27idO7iTu7ibe7iX+7ifB3iQh3iYR3iUx3icJ3iSp3iaZ3iW53ieF3iRl3iZV3iV13idN3iTt3ibd3iX93ifD/iQj/iYT/iUz/icL/iSr/iab/iW7/ieH/iRn/iZX/iV3/idP/iTv/ibf/gf//LfQ38ABmQgBmYQBmUwBmcIhmQohmYYhmU4hmcERmQkRmYURmU0RmcMxmQsxmYcxmU8xmcCJmQiJmYSJmUyJmcKpmQqpmYapmU6pmcGZmQmZmYWZmU2ZmcO5mQu5mYe5mU+5mcBFmQhFmYRFmUxFmcJlmQplmYZlmU5lmcFVmQlVmYVVmU1VmcN1mQt1mYd1mU91mcDNmQjNmYTNmUzNmcLtmQrtmYbtmU7tmcHdmQndmYXdmU3dmcP9mQv9mYf9mU/9ucADuQgDuYQDuUwDucIjuQojuYYjuU4jucETuQkTuYUTuU0TucMzuQszuYczuU8zucCLuQiLuYSLuUyLucKruQqruYaruU6rucGbuQmbuYWbuU2bucO7uQu7uYe7uU+7ucBHuQhHuYRHuUxHucJnuQpnuYZnuU5nucFXuQlXuYVXuU1XucN3uQt3uYd3uU93ucDPuQjPuYTPuUzPucLvuQrvuYbvuU7vucHfuQnfuYXfuU3fucP/uQv/uYf/se//PfBH4ABGYiBGYRBGYzBGYIhGYqhGYZhGY7hGYERGYmRGYVRGY3RGYMxGYuxGYdxGY/xmYAJmYiJmYRJmYzJmYIpmYqpmYZpmY7pmYEZmYmZmYVZmY3ZmYM5mYu5mYd5mY/5WYAFWYiFWYRFWYzFWYIlWYqlWYZlWY7lWYEVWYmVWYVVWY3VWYM1WYu1WYd1WY/12YAN2YiN2YRN2YzN2YIt2Yqt2YZt2Y7t2YEd2Ymd2YVd2Y3d2YM92Yu92Yd92Y/9OYADOYiDOYRDOYzDOYIjOYqjOYZjOY7jOYETOYmTOYVTOY3TOYMzOYuzOYdzOY/zuYALuYiLuYRLuYzLuYIruYqruYZruY7ruYEbuYmbuYVbuY3buYM7uYu7uYd7uY/7eYAHeYiHeYRHeYzHeYIneYqneYZneY7neYEXeYmXeYVXeY3XeYM3eYu3eYd3eY/3+YAP+YiP+YRP+YzP+YIv+Yqv+YZv+Y7v+YEf+Ymf+YVf+Y3f+YM/+Yu/+Yf/8S//NfYFYEAGYmAGYVAGY3CGYEiGYmiGYViGY3hGYERGYmRGYVRGY3TGYEzGYmzGYVzGY3wmYEImYmImYVImY3KmYEqmYmqmYVqmY3pmYEZmYmZmYVZmY3bmYE7mYm7mYV7mY34WYEEWYmEWYVEWY3GWYEmWYmmWYVmWY3lWYEVWYmVWYVVWY3XWYE3WYm3WYV3WY302YEM2YmM2YVM2Y3O2YEu2Ymu2YVu2Y3t2YEd2Ymd2YVd2Y3f2YE/2Ym/2YV/2Y38O4EAO4mAO4VAO43CO4EiO4miO4ViO43hO4ERO4mRO4VRO43TO4EzO4mzO4VzO43wu4EIu4mIu4VIu43Ku4Equ4mqu4Vqu43pu4EZu4mZu4VZu43bu4E7u4m7u4V7u434e4EEe4mEe4VEe43Ge4Eme4mme4Vme43le4EVe4mVe4VVe43Xe4E3e4m3e4V3e430+4EM+4mM+4VM+43O+4Eu+4mu+4Vu+43t+4Ed+4md+4Vd+43f+4E/+4m/+4X/8y38N/QEYkIEYmEEYlMEYnCEYkqEYmmEYluEYnhEYkZEYmVEYldEYnTEYk7EYm3EYl/EYnwmYkImYmEmYlMmYnCmYkqmYmmmYlumYnhmYkZmYmVmYldmYnTmYk7mYm3mYl/mYnwVYkIVYmEVYlMVYnCVYkqVYmmVYluVYnhVYkZVYmVVYldVYnTVYk7VYm3VYl/VYnw3YkI3YmE3YlM3YnC3Ykq3Ymm3Ylu3Ynh3YkZ3YmV3Yld3YnT3Yk73Ym33Yl/3YnwM4kIM4mEM4lMM4nCM4kqM4mmM4luM4nhM4kZM4mVM4ldM4nTM4k7M4m3M4l/M4nwu4kIu4mEu4lMu4nCu4kqu4mmu4luu4nhu4kZu4mVu4ldu4nTu4k7u4m3u4l/u4nwd4kId4mEd4lMd4nCd4kqd4mmd4lud4nhd4kZd4mVd4ldd4nTd4k7d4m3d4l/d4nw/4kI/4mE/4lM/4nC/4kq/4mm/4lu/4nh/4kZ/4mV/4ld/4nT/4k7/4m3/4H//y3yBfAAZkIAZmEAZlMAZnCIZkKIZmGIZlOIZnBEZkJEZmFEZlNEZnDMZkLMZmHMZlPMZnAiZkIiZmEiZlMiZnCqZkKqZmGqZlOqZnBmZkJmZmFmZlNmZnDuZkLuZmHuZlPuZnARZkIRZmERZlMRZnCZZkKZZmGZZlOZZnBVZkJVZmFVZlNVZnDdZkLdZmHdZlPdZnAzZkIzZmEzZlMzZnC7ZkK7ZmG7ZlO7ZnB3ZkJ3ZmF3ZlN3ZnD/ZkL/ZmH/ZlP/bnAA7kIA7mEA7lMA7nCI7kKI7mGI7lOI7nBE7kJE7mFE7lNE7nDM7kLM7mHM7lPM7nAi7kIi7mEi7lMi7nCq7kKq7mGq7lOq7nBm7kJm7mFm7lNm7nDu7kLu7mHu7lPu7nAR7kIR7mER7lMR7nCZ7kKZ7mGZ7lOZ7nBV7kJV7mFV7lNV7nDd7kLd7mHd7lPd7nAz7kIz7mEz7lMz7nC77kK77mG77lO77nB37kJ37mF37lN37nD/7kL/7mH/7Hv/w3wB+AARmIgRmEQRmMwRmCIRmKoRmGYRmO4RmBERmJkRmFURmN0RmDMRmLsRmHcRmP8ZmACZmIiZmESZmMyZmCKZmKqZmGaZmO6ZmBGZmJmZmFWZmN2ZmDOZmLuZmHeZmP+VmABVmIhVmERVmMxVmCJVmKpVmGZVmO5VmBFVmJlVmFVVmN1VmDNVmLtVmHdVmP9dmADdmIjdmETdmMzdmCLdmKrdmGbdmO7dmBHdmJndmFXdmN3dmDPdmLvdmHfdmP/TmAAzmIgzmEQzmMwzmCIzmKozmGYzmO4zmBEzmJkzmFUzmN0zmDMzmLszmHczmP87mAC7mIi7mES7mMy7mCK7mKq7mGa7mO67mBG7mJm7mFW7mN27mDO7mLu7mHe7mP+3mAB3mIh3mER3mMx3mCJ3mKp3mGZ3mO53mBF3mJl3mFV3mN13mDN3mLt3mHd3mP9/mAD/mIj/mET/mMz/mCL/mKr/mGb/mO7/mBH/mJn/mFX/mN3/mDP/mLv/mH//Ev/wX3BGBABmJgBmFQBmNwhmBIhmJohmFYhmN4RmBERmJkRmFURmN0xmBMxmJsxmFcxmN8JmBCJmJiJmFSJmNypmBKpmJqpmFapmN6ZmBGZmJmZmFWZmN25mBO5mJu5mFe5mN+FmBBFmJhFmFRFmNxlmBJlmJplmFZlmN5VmBFVmJlVmFVVmN11mBN1mJt1mFd1mN9NmBDNmJjNmFTNmNztmBLtmJrtmFbtmN7dmBHdmJndmFXdmN39mBP9mJv9mFf9mN/DuBADuJgDuFQDuNwjuBIjuJojuFYjuN4TuBETuJkTuFUTuN0zuBMzuJszuFczuN8LuBCLuJiLuFSLuNyruBKruJqruFaruN6buBGbuJmbuFWbuN27uBO7uJu7uFe7uN+HuBBHuJhHuFRHuNxnuBJnuJpnuFZnuN5XuBFXuJlXuFVXuN13uBN3uJt3uFd3uN9PuBDPuJjPuFTPuNzvuBLvuJrvuFbvuN7fuBHfuJnfuFXfuN3/uBP/uJv/uF//Mt/gX0BGJCBGJhBGJTBGJwhGJKhGJphGJbhGJ4RGJGRGJlRGJXRGJ0xGJOxGJtxGJfxGJ8JmJCJmJhJmJTJmJwpmJKpmJppmJbpmJ4ZmJGZmJlZmJXZmJ05mJO5mJt5mJf5mJ8FWJCFWJhFWJTFWJwlWJKlWJplWJblWJ4VWJGVWJlVWJXVWJ01WJO1WJt1WJf1WJ8N2JCN2JhN2JTN2Jwt2JKt2Jpt2Jbt2J4d2JGd2Jld2JXd2J092JO92Jt92Jf92J8DOJCDOJhDOJTDOJwjOJKjOJpjOJbjOJ4TOJGTOJlTOJXTOJ0zOJOzOJtzOJfzOJ8LuJCLuJhLuJTLuJwruJKruJpruJbruJ4buJGbuJlbuJXbuJ07uJO7uJt7uJf7uJ8HeJCHeJhHeJTHeJwneJKneJpneJbneJ4XeJGXeJlXeJXXeJ03eJO3eJt3eJf3eJ8P+JCP+JhP+JTP+Jwv+JKv+Jpv+Jbv+J4f+JGf+Jlf+JXf+J0/+JO/+Jt/+B//8l9QbwAGZCAGZhAGZTAGZwiGZCiGZhiGZTiGZwRGZCRGZhRGZTRGZwzGZCzGZhzGZTzGZwImZCImZhImZTImZwqmZCqmZhqmZTqmZwZmZCZmZhZmZTZmZw7mZC7mZh7mZT7mZwEWZCEWZhEWZTEWZwmWZCmWZhmWZTmWZwVWZCVWZhVWZTVWZw3WZC3WZh3WZT3WZwM2ZCM2ZhM2ZTM2Zwu2ZCu2Zhu2ZTu2Zwd2ZCd2Zhd2ZTd2Zw/2ZC/2Zh/2ZT/25wAO5CAO5hAO5TAO5wiO5CiO5hiO5TiO5wRO5CRO5hRO5TRO5wzO5CzO5hzO5TzO5wIu5CIu5hIu5TIu5wqu5Cqu5hqu5Tqu5wZu5CZu5hZu5TZu5w7u5C7u5h7u5T7u5wEe5CEe5hEe5TEe5wme5Cme5hme5Tme5wVe5CVe5hVe5TVe5w3e5C3e5h3e5T3e5wM+5CM+5hM+5TM+5wu+5Cu+5hu+5Tu+5wd+5Cd+5hd+5Td+5w/+5C/+5h/+x7/8F9AfgAEZiIEZhEEZjMEZgiEZiqEZhmEZjuEZgREZiZEZhVEZjdEZgzEZi7EZh3EZj/GZgAmZiImZhEmZjMmZgimZiqmZhmmZjumZgRmZiZmZhVmZjdmZgzmZi7mZh3mZj/lZgAVZiIVZhEVZjMVZgiVZiqVZhmVZjuVZgRVZiZVZhVVZjdVZgzVZi7VZh3VZj/XZgA3ZiI3ZhE3ZjM3Zgi3Ziq3Zhm3Zju3ZgR3ZiZ3ZhV3Zjd3Zgz3Zi73Zh33Zj/05gAM5iIM5hEM5jMM5giM5iqM5hmM5juM5gRM5iZM5hVM5jdM5gzM5i7M5h3M5j/O5gAu5iIu5hEu5jMu5giu5iqu5hmu5juu5gRu5iZu5hVu5jdu5gzu5i7u5h3u5j/t5gAd5iId5hEd5jMd5gid5iqd5hmd5jud5gRd5iZd5hVd5jdd5gzd5i7d5h3d5j/f5gA/5iI/5hE/5jM/5gi/5iq/5hm/5ju/5gR/5iZ/5hV/5jd/5gz/5i7/5h//xL/8t5gnAgAzEwAzCoAzG4AzBkAzF0AzDsAzH8IzAiIzEyIzCqIzG6IzBmIzF2IzDuIzH+EzAhEzExEzCpEzG5EzBlEzF1EzDtEzH9MzAjMzEzMzCrMzG7MzBnMzF3MzDvMzH/CzAgizEwizCoizG4izBkizF0izDsizH8qzAiqzEyqzCqqzG6qzBmqzF2qzDuqzH+mzAhmzExmzCpmzG5mzBlmzF1mzDtmzH9uzAjuzEzuzCruzG7uzBnuzF3uzDvuzH/hzAgRzEwRzCoRzG4RzBkRzF0RzDsRzH8ZzAiZzEyZzCqZzG6ZzBmZzF2ZzDuZzH+VzAhVzExVzCpVzG5VzBlVzF1VzDtVzH9dzAjdzEzdzCrdzG7dzBndzF3dzDvdzH/TzAgzzEwzzCozzG4zzBkzzF0zzDszzH87zAi7zEy7zCq7zG67zBm7zF27zDu7zH+3zAh3zEx3zCp3zG53zBl3zF13zDt3zH9/zAj/zEz/zCr/zG7/zBn/zF3/zD//iX/xbyBWBABmJgBmFQBmNwhmBIhmJohmFYhmN4RmBERmJkRmFURmN0xmBMxmJsxmFcxmN8JmBCJmJiJmFSJmNypmBKpmJqpmFapmN6ZmBGZmJmZmFWZmN25mBO5mJu5mFe5mN+FmBBFmJhFmFRFmNxlmBJlmJplmFZlmN5VmBFVmJlVmFVVmN11mBN1mJt1mFd1mN9NmBDNmJjNmFTNmNztmBLtmJrtmFbtmN7dmBHdmJndmFXdmN39mBP9mJv9mFf9mN/DuBADuJgDuFQDuNwjuBIjuJojuFYjuN4TuBETuJkTuFUTuN0zuBMzuJszuFczuN8LuBCLuJiLuFSLuNyruBKruJqruFaruN6buBGbuJmbuFWbuN27uBO7uJu7uFe7uN+HuBBHuJhHuFRHuNxnuBJnuJpnuFZnuN5XuBFXuJlXuFVXuN13uBN3uJt3uFd3uN9PuBDPuJjPuFTPuNzvuBLvuJrvuFbvuN7fuBHfuJnfuFXfuN3/uBP/uJv/uF//Mt/i3gDMCADMTCDMCiDMThDMCRDMTTDMCzDMTwjMCIjMTKjMCqjMTpjMCZjMTbjMC7jMT4TMCETMTGTMCmTMTlTMCVTMTXTMC3TMT0zMCMzMTOzMCuzMTtzMCdzMTfzMC/zMT8LsCALsTCLsCiLsThLsCRLsTTLsCzLsTwrsCIrsTKrsCqrsTprsCZrsTbrsC7rsT4bsCEbsTGbsCmbsTlbsCVbsTXbsC3bsT07sCM7sTO7sCu7sTt7sCd7sTf7sC/7sT8HcCAHcTCHcCiHcThHcCRHcTTHcCzHcTwncCIncTKncCqncTpncCZncTbncC7ncT4XcCEXcTGXcCmXcTlXcCVXcTXXcC3XcT03cCM3cTO3cCu3cTt3cCd3cTf3cC/3cT8P8CAP8TCP8CiP8ThP8CRP8TTP8CzP8Twv8CIv8TKv8Cqv8Tpv8CZv8Tbv8C7v8T4f8CEf8TGf8Cmf8Tlf8CVf8TXf8C3f8T0/8CM/8TO/8Cu/8Tt/8Cd/8f8AsyVsRw==AwAAAACAAACgfwAAdgAAAHcAAAB3AAAAeJztyDENACAMADC8EBJkTA1qmaeF2aA9m/fZcdqM0Vak995777333nvvvffee++9995777333nvvvffee++9995777333nvvvffee++9995777333nvvvffee++9995777333nvvvffee++99957/9EX/I+fp3ic7cgxDQAgDAAwvBASZEzN1DJPZNigPZvZZoxnRZ22I7333nvvvffee++9995777333nvvvffee++9995777333nvvvffee++9995777333nvvvffee++9995777333nvvvffee++9995777333vuP/gJF6p09eJztyDENACAMALB5ISTImBrUMk9kqOBoz0a0mXXayv2MDO+9995777333nvvvffee++9995777333nvvvffee++9995777333nvvvffee++9995777333nvvvffee++9995777333nvvvffee++99/6jvwaTeWc=AQAAAACAAAAwGwAABAEAAA==eJztlksOxDAIQ9PO/e88mq3lZ6JoVKURC5SGfADjUO4xxv1yuUA+BwjF9k95IkenYNX52CsfapNivWVddTTSWrXf+aO66p50ZsZvnV9wD9msbLk67HCajTt9u7WK34ShyythnHhA8VB8Dh/CM+FGOFexJRySn2rbYULcUl4QpitvKPHW2a14f4p0P9T/36ew6nzslY+Z+ubqp+popLVqv/NHddU96cyM3zrvfoh5QRgnHlA8FF/3Q4zpyhtKvHV2K96fIt0P9f/3Kaw6H3vlY6a+ufqpOhpprdrv/FFddU86M+O3zrsfYl4QxokHFA/F1/0QY7ryhhJvnd2K9z/5Ao84Duw=AQAAAACAAACQUQAAMQAAAA==eJztwzENAAAIA7B3SjCBx2lGCG3SbCeqqqqqqqqqqqqqqqqqqqqqqqqqqo8eaqCtmg==AQAAAACAAAAwGwAAIwAAAA==eJztwwENAAAIA6BmJjC67/QgwkZuJ6qqqqqqqvp0AWlKhrc=AQAAAACAAAAwGwAAPQAAAA==eJzt1rEJADAIRUGH/dl/hbSp0oiFcAci2Nm9VFUG5wxPnp3Pfet/AMC87b2ghwCAru29oIcAgK4L9At6fQ==AQAAAACAAABgNgAAawoAAA==eJw12sMWIIqSBMDXtm3btm3btm3btm3btm3b9u1ZTHRt4hPqZFX+73//PwEYkIEYmEEYlMEYnCEYkqEYmmEYluEYnhEYkZEYmVEYldEYnTEYk7EYm3EYl/EYnwmYkImYmEmYlMmYnCmYkqmYmmmYlumYnhmYkZmYmVmYldmYnTmYk7mYm3mYl/mYnwVYkIVYmEVYlMVYnCVYkqVYmmVYluVYnhVYkZVYmVVYldVYnTVYk7VYm3VYl/VYnw3YkI3YmE3YlM3YnC3Ykq3Ymm3Ylu3Ynh3YkZ3YmV3Yld3YnT3Yk73Ym33Yl/3YnwM4kIM4mEM4lMM4nCM4kqM4mmM4luM4nhM4kZM4mVM4ldM4nTM4k7M4m3M4l/M4nwu4kIu4mEu4lMu4nCu4kqu4mmu4luu4nhu4kZu4mVu4ldu4nTu4k7u4m3u4l/u4nwd4kId4mEd4lMd4nCd4kqd4mmd4lud4nhd4kZd4mVd4ldd4nTd4k7d4m3d4l/d4nw/4kI/4mE/4lM/4nC/4kq/4mm/4lu/4nh/4kZ/4mV/4ld/4nT/4k7/4m3/4H//y3+IPwIAMxMAMwqAMxuAMwZAMxdAMw7AMx/CMwIiMxMiMwqiMxuiMwZiMxdiMw7iMx/hMwIRMxMRMwqRMxuRMwZRMxdRMw7RMx/TMwIzMxMzMwqzMxuzMwZzMxdzMw7zMx/wswIIsxMIswqIsxuIswZIsxdIsw7Isx/KswIqsxMqswqqsxuqswZqsxdqsw7qsx/pswIZsxMZswqZsxuZswZZsxdZsw7Zsx/bswI7sxM7swq7sxu7swZ7sxd7sw77sx/4cwIEcxMEcwqEcxuEcwZEcxdEcw7Ecx/GcwImcxMmcwqmcxumcwZmcxdmcw7mcx/lcwIVcxMVcwqVcxuVcwZVcxdVcw7Vcx/XcwI3cxM3cwq3cxu3cwZ3cxd3cw73cx/08wIM8xMM8wqM8xuM8wZM8xdM8w7M8x/O8wIu8xMu8wqu8xuu8wZu8xdu8w7u8x/t8wId8xMd8wqd8xud8wZd8xdd8w7d8x/f8wI/8xM/8wq/8xu/8wZ/8xd/8w//4l/8CfwAGZCAGZhAGZTAGZwiGZCiGZhiGZTiGZwRGZCRGZhRGZTRGZwzGZCzGZhzGZTzGZwImZCImZhImZTImZwqmZCqmZhqmZTqmZwZmZCZmZhZmZTZmZw7mZC7mZh7mZT7mZwEWZCEWZhEWZTEWZwmWZCmWZhmWZTmWZwVWZCVWZhVWZTVWZw3WZC3WZh3WZT3WZwM2ZCM2ZhM2ZTM2Zwu2ZCu2Zhu2ZTu2Zwd2ZCd2Zhd2ZTd2Zw/2ZC/2Zh/2ZT/25wAO5CAO5hAO5TAO5wiO5CiO5hiO5TiO5wRO5CRO5hRO5TRO5wzO5CzO5hzO5TzO5wIu5CIu5hIu5TIu5wqu5Cqu5hqu5Tqu5wZu5CZu5hZu5TZu5w7u5C7u5h7u5T7u5wEe5CEe5hEe5TEe5wme5Cme5hme5Tme5wVe5CVe5hVe5TVe5w3e5C3e5h3e5T3e5wM+5CM+5hM+5TM+5wu+5Cu+5hu+5Tu+5wd+5Cd+5hd+5Td+5w/+5C/+5h/+x7/8d+gPwIAMxMAMwqAMxuAMwZAMxdAMw7AMx/CMwIiMxMiMwqiMxuiMwZiMxdiMw7iMx/hMwIRMxMRMwqRMxuRMwZRMxdRMw7RMx/TMwIzMxMzMwqzMxuzMwZzMxdzMw7zMx/wswIIsxMIswqIsxuIswZIsxdIsw7Isx/KswIqsxMqswqqsxuqswZqsxdqsw7qsx/pswIZsxMZswqZsxuZswZZsxdZsw7Zsx/bswI7sxM7swq7sxu7swZ7sxd7sw77sx/4cwIEcxMEcwqEcxuEcwZEcxdEcw7Ecx/GcwImcxMmcwqmcxumcwZmcxdmcw7mcx/lcwIVcxMVcwqVcxuVcwZVcxdVcw7Vcx/XcwI3cxM3cwq3cxu3cwZ3cxd3cw73cx/08wIM8xMM8wqM8xuM8wZM8xdM8w7M8x/O8wIu8xMu8wqu8xuu8wZu8xdu8w7u8x/t8wId8xMd8wqd8xud8wZd8xdd8w7d8x/f8wI/8xM/8wq/8xu/8wZ/8xd/8w//4l/8e/AEYkIEYmEEYlMEYnCEYkqEYmmEYluEYnhEYkZEYmVEYldEYnTEYk7EYm3EYl/EYnwmYkImYmEmYlMmYnCmYkqmYmmmYlumYnhmYkZmYmVmYldmYnTmYk7mYm3mYl/mYnwVYkIVYmEVYlMVYnCVYkqVYmmVYluVYnhVYkZVYmVVYldVYnTVYk7VYm3VYl/VYnw3YkI3YmE3YlM3YnC3Ykq3Ymm3Ylu3Ynh3YkZ3YmV3Yld3YnT3Yk73Ym33Yl/3YnwM4kIM4mEM4lMM4nCM4kqM4mmM4luM4nhM4kZM4mVM4ldM4nTM4k7M4m3M4l/M4nwu4kIu4mEu4lMu4nCu4kqu4mmu4luu4nhu4kZu4mVu4ldu4nTu4k7u4m3u4l/u4nwd4kId4mEd4lMd4nCd4kqd4mmd4lud4nhd4kZd4mVd4ldd4nTd4k7d4m3d4l/d4nw/4kI/4mE/4lM/4nC/4kq/4mm/4lu/4nh/4kZ/4mV/4ld/4nT/4k7/4m3/4H//yX7EvAAMyEAMzCIMyGIMzBEMyFEMzDMMyHMMzAiMyEiMzCqMyGqMzBmMyFmMzDuMyHuMzARMyERMzCZMyGZMzBVMyFVMzDdMyHdMzAzMyEzMzC7MyG7MzB3MyF3MzD/MyH/OzAAuyEAuzCIuyGIuzBEuyFEuzDMuyHMuzAiuyEiuzCquyGquzBmuyFmuzDuuyHuuzARuyERuzCZuyGZuzBVuyFVuzDduyHduzAzuyEzuzC7uyG7uzB3uyF3uzD/uyH/tzAAdyEAdzCIdyGIdzBEdyFEdzDMdyHMdzAidyEidzCqdyGqdzBmdyFmdzDudyHudzARdyERdzCZdyGZdzBVdyFVdzDddyHddzAzdyEzdzC7dyG7dzB3dyF3dzD/dyH/fzAA/yEA/zCI/yGI/zBE/yFE/zDM/yHM/zAi/yEi/zCq/yGq/zBm/yFm/zDu/yHu/zAR/yER/zCZ/yGZ/zBV/yFV/zDd/yHd/zAz/yEz/zC7/yG7/zB3/yF3/zD//jX/4r9AdgQAZiYAZhUAZjcIZgSIZiaIZhWIZjeEZgREZiZEZhVEZjdMZgTMZibMZhXMZjfCZgQiZiYiZhUiZjcqZgSqZiaqZhWqZjemZgRmZiZmZhVmZjduZgTuZibuZhXuZjfhZgQRZiYRZhURZjcZZgSZZiaZZhWZZjeVZgRVZiZVZhVVZjddZgTdZibdZhXdZjfTZgQzZiYzZhUzZjc7ZgS7Zia7ZhW7Zje3ZgR3ZiZ3ZhV3Zjd/ZgT/Zib/ZhX/Zjfw7gQA7iYA7hUA7jcI7gSI7iaI7hWI7jeE7gRE7iZE7hVE7jdM7gTM7ibM7hXM7jfC7gQi7iYi7hUi7jcq7gSq7iaq7hWq7jem7gRm7iZm7hVm7jdu7gTu7ibu7hXu7jfh7gQR7iYR7hUR7jcZ7gSZ7i/wETOmHYAgAAAACAAAAgIwAAdgAAAD0AAAA=eJztyDENACAMADA8ERLOqUEt87QwG7Rn8z47Tpsx2or03nvvvffee++9995777333nvvvffee++9995777333nvvvffee++9995777333nvvvffee++9995777333nvvvffee++9995777333nvvP/oCvK2ftnic7cgxDQAgDAAwPBESzqmZWuaJDBmkPZvZZoxnRZ22I7333nvvvffee++9995777333nvvvf/gLz7+gf8=AgAAAACAAADQPwAAnzAAAG4eAAA=eJxt2nmcTvX7+PGxZGyfEhKFJHtJNFQq6Zz3lOaTj/rayj6WyBKSxhLGOkKUZQhDtsuS3diX4T5nwlgjpFLGnn0Lifzu67re1znXH795PD6Pz+txP8597nPe533e5+72jPmuYGYM/g//ov+/bPBxX7rvx22C/iQ+3ZOu3bpR0DExxXRHwk51pOetinGlD1UZFvTzlW8H/XWV7kb6oTKngo7+Lx6z+cn8wXvbf54/OJ6jN/IGx9lvUt7Mc9Mq0jYDm+XNnFY/iY8tJjbz/dxdgg6OmTsStj3maLdNfIL281nLPJn+oFn8uVXzZF56di+99+VZD2Wu6LaHXv/LzZl5+fXnqTv/liOz5N0+tM2UATkyb6Ul8Tm2yZHZd0VPTzo4Bu5I2PYYsN8vTe99rlKOzGqDNtD2WyY/8Memd6LzTW35j5+9qw+N1YiLd/wmg07S9seTb/vBdYx2icEfedLB53JHwrafG+0tQx6l/fSuc9uXa/Hf+rf878Zm0nsbmr/8x+6Nom26OTf9fn+kUFccesP/9PHnqB89fd3v98sg2t58f92f//ZP1A2KXPOvDM9F+3yt0CX/z1+f4Gtd96L/vunuSQfHyR0J2x5ntF8dX4g+6+y0M35kOH/WexPP+AuOjKF9xuU746/rnkzjcK3Iab/wt6Np++Ryp3yZ89hn7tygbZatPOm/2ngn7adgl5N+xdO3jLTMw44fn/QbnOVrnevZE/5T41bZuZTt3+zQPOhwjmWHx08tcyzb//hIGdpPk0HH/aQuM6lL5j7unyo9nI7n4epH/QsvXKf9DO1yxD+WOZu2eb/FYX9V7mG0zdlth/xaucrzHNt6yF8ba+d5tINj4I6EzccwLOmg/8N742ibyAcH/auTk6mXFTvoj57C1zf+w12+X/9Xev3alSx/7vq7/FnJWX6ZFs086XBeZal5laXmVZafZ9Qj9N4GZbP8RS9tpO3XmB1+99R79PoNk+lvvtePen6i7y/K/SLP5w+3+gtj+9L2N2ts9W80nG7nRob/8tZPgg7nTIaaMxlqzmT4To7itM/zczf5xfanUde5vNbfPiIfjec/B9b4jVvlpV5qVvsZrUvRHEgpstpfkSeVtp84KN3vuoDXmZiYdL/ARLnu6eq6p6vrnq6ue7q/o2w5em/jbav89RtG0P5/PLfSvzNsNb23Va1lfsKcRdRnui31F075grrle0v8qw1m2Wu9wL+Rr40nHV7rBepaLwg/N9oVupei9/7ecp6fe2EMfe7VV+b5856pQa9fHTDX79tkOPXQ32b4t5qspX12mDzDX9OsF/XxnjP870oWoPG5eDTNr7p+o73uaX7tpC5Bh/MhTc2HNDUf0vzqnQrTZxXNOdlP3V6M9llhRar/wfxb9PriBqm+P+ckHWfsgEn+uVbj6fWkspP8ntcnUF/7baL/3Mpnqd+cMMFf3GSCXU/G+/+MtetetMO5MV7NjfFqboz3y818kvbT7uTXfszUr+l4ip0f65ff/j2vY/PH+gc6D6B+Y9xXflrB07TNhce/9EsNHsrrbUyKP+vNRE86nA8paj6kqPmQ4r939mn63B8LjvCP7a1EfXnwcH/lvLx0Lr+8NNy/V3o77Wfhk8P97S7fm+9NGurP/ugCvX76+BA/duFSOoYt+Qf7z1SeRNvUjh3gz3j1BvW03/v749f0p+3bLe3rF/1nhr1GSf66qx2DDq9dkrp2SeraJfnz4/kZ0XZJt2Atxe7wZw7q81O7+qtz8dye0rirn2/1cOoXn+vip64eRO+t6XT2C47kuTftTEd/49kHtE2fSe39P2b/S702o53/0qWR1PeGtPXPVIiNl5Y1eVDjtv6Ahjnt+Cf6Wb7cj4lq/BPV+Ceq8U/0P8zLa4LboYVf5Xe+7yY1beqffoivtVeokT+21G+0TVZaQ79gZX5GTB/xf763cBq9/vqSBD/HknJ2bUzwMxrIeCao8UxQ45mgxjPBP/znM/Te7e3e8UfX4udU0RqOf/+9/9J5Va/3ij8udiDtJ3v9y/7iZlvsecX5Vwp+EnR4vnHqfOPU+cb5o01R2v+mXtX8Ut/ys7hOq+f9XPXfps/qW7Sqf3XPl7TNM3HP+edX3aXXXy9Rxa/xUnVeA9dU8t9MepveO3tWJb9zF/5eVBzK+ccuLKPtV+x5xp957yXqCRPL+Cvb8dr1brfSfq9GT/N9mlzK75fTPvejHY5VKTVWpdRYlfL/u6EE7Wf/2BL+gHiezzdbFPd75eG1aNjTj/rTslfT/s8/9YhfL34P9aO/F/SPnORn98/nC/gbbvr0+qG9Bfx2kUl2PY/1Fya286TVd0U1nrFqPGP9ZZ14XY0tnNtftrYDne9jZ3P67rXN1E9VuuvdXxih/Xx074Yn+/l18DWv7ak59N6ZzlVvx+/8HeaViVe8zWnH6L13P7/oramYSt3lmwvevnL56JjLNTvvXfxiN72esOGcd3o/r59H15/2/rjOa9Hl09le7bpH5XuI5y3tHrT6fuLdWpwm30+87TN61w23Cb6reMVSeH5+3uYXr0q/DOqCK372Up/PRfd7vyJHvME5a9LrDQdt9q71akrHmf7JJq/l8NHUtTtt9J7tOJ966oLo91m7bmD/9Ehe6tbT13lf5m5C22z8YbVXre0AeZ56/Y/2DVo9Z73Y7+T4072zMZ/VDbcJnrneyb9foGOr+NEKL/ew32n/Yw4v8wqk8DFP/XSp13RBBq+NNxd61xbc5PXqnYXe0F7c+9uDt6jwZOruFcH76MBg6kb9ZnkHXyxJY14036zg+u79aIZX/U4eWqOK1Z7hyXr1xYE070T/IvRe02m6F7tlPh1D7hxTg/fOema8d+fwWZ4/V8Z46y/OoF7caYxXfsX/+H7sOtI7X7ASfz8fkeKVaXBTnkFe7MiP5LmjxirF+22tjFWKN/qfz+uG2wTPI6/G0yXpePpeGOFt2fw9dYFDw72b9Vbwd+kWw7ydf/Aa+FzpoV7B2S/S66N+S/bKL6xLnWt1spf48BLqeq2/8CpvjNBxnmz+hbc35y/Ut2b29ZJmDqFt4lL7eGWG7uI5vLWndzCO7812eXp63X97iF4f+34Pb9apqdT7y/Tw5oxeRtt8e7CrN+z7E/T6tpgu3uODH9Axt/q1o1eyHY9/q10dvbv5b9M2Y57t6N3Kd42Ov9extt6/Xz9L+3lyTluv//VV1GduJ3of7spDc3LU2URv7LUB9N5CvVt7nWZtp36xZGuvcO2D/PxyWnkn0m/Qe8dVauUdzuLv0o0nNvN+nrefXr9T/APv5UOL6fWSdZp6Vy63p/2sOtPE67d4A3XZrxt7268l0/a7yzb2furB87PZB+95+a6O4e9v39f3XnjzQ9pmXbn63sfrjtB7N5R/11twYiz1D68leOPe4rkas6uOd/exVOp5U2t76yrzM7pzyVe8puOv0Ovv7IjzVpTJ5u1j4rzJA2UNjFPzJ84rOUnmT5yXNOfTuuE2wfPFe207r4dXalUN7nHsWafzUZe9WcWrf46/D8Sdr+Blle/E13FSBW/O1nnUg68+4X3ZLoau3V/nn/AmPxlPr28784h37Ey+eGm5p9o++XBw7xR/8s+I9Kvjfo38+2F+em+3Zj9H+uwrzePQ9OdIj5vP0FhlVTwcSSs2jo65+YxDkccu8lrafO+ByJyFrfmZuP5ApPlivh/v/L0/sir5GvWVP/dH7n61lManVot9kcKf8zG7f+2N7H7J8Pqwenfkxiy+LgU/2h2Z8sRb3C12R/KVX0Qd+/zuSLXBwN9zGu6K7FvM43Oy/q7I2P5naP/Fau+MJNzmdWDOlB2RuDw/0jaL922PVO37B/WobT9ERlVbT9s8esuPVN69g3r8r5FIzPHCPM8TtkVyT9hN59uzTUYk9gJ/bynTICOy7txh2r7T3k2RpYWv8tzYsynyQx2eM8vyb4qML/QxvX52w4bIhE58Xz+SuiESU3cv7efr6tFOvkT7ObNvfWTtwLw0Jo0eWx+Jufodz88S6yIxk9bwOf5nXSS1H6//G55aG4nZWom2eWvsmugxf8/ffy6vjlTr/BTtv+Xy1ZGeO/hZ1m/u6kiOrBF0rct2WR2J2c/73PP2ajxfXn+6pUdivuN7pGrGqsjFEvybQJETqyLlTsl3p/SIeqZEnE+myTMl0urXKxnhNsEzJfJHvSJ0PBveXxU95m30udU/WR6JadOZv3t8tyw6DrNpnzPrRXs5j+GWF5ZGX29Ex7DowWI8Zupnei+KHMrJ92nrVxbh9jRuhWotxP3QZxV5fD6OM+3z9wbzIjGFRvNadH9u9BzrUH87l5r2U+XArEjSlk/ovZNrzoruk78zVGo/A5u2WbBV7unoOjN9Oo4VvX7icnQMvuZ1tdCNbyMxlWLp+G/0oaZj85t/i+dL27zUONox/PtAt5e+xffyfGsyBa8pz5kKU3AMaftaaybj9nQuOWMn45yhba4dmITXnTp32Qk4tjwHHvkmEtPjDvXOv8ZEYsrwOjnQH4WvU895ZBSOCXXxeyNxvlGPNoNwzKk3f/+/iKxLS27kjcgaQn/yWygNUmzY9trRnz0G+rPznP7sWPF+joRtx5z+7LnQn73u9GfnOf3Ze4T/UsO215r+yiSHbcefj6eROoY66nMrqc8qrPZ/1wvSzivez2zV3cIO7hE6tkjM//dP7hHa3lX7UT07bLtu2OMJ265X9vjDtnOb99MobHvf0Z+dG/Rn54M9trDt3ODP+j5su4bw524L294vfAxHwrbznI/nUth2TvJ7c4RzzN47vB+ee7+vzuVID3n8K0eOv8YjExz53CXZEx25jkNem+TIHOj8VrTtXK1fJDr2dv6sajnZkeP5sW+07fxpX2GKI+f7Su9o2/n8TNa3jlyLkSWnOjIf/i8r2vYcm+We5si5DLg/3ZF5Hl1Dgmv+/PoZjszn/gnfOTL/d8XMcuS6P+RF216vn+vNduS+yzgy15HxefvCXEeu0acz5zlyr+28Nc+RsR13GxyZq3NrLXDkPt3+UbTt3NgyZIEj92b8yAVOY5ffm5G90JH763j57x2ZV8c2RdvOvWbOYkfmzPAdyxyZG/PuRVvWum7LHbmP2r6+wpH5tqDFCkfu8bYFVzo5IzyXhry50pF7890OK51if/AzqPrIlY7cy7XyrnJkzkefU070OUWf9eyFVU54j6c70WeQPLOc8H5Md6LPrDeko88yJ9yG78foc9OJPjfp9eiz1Yk+W2k/F75Z48ga9fw3G5xBj0WoEzZscCr9zv9NbbZvcN7r+Sntp9rSjU7/z/n53mD9Rkfui8llNznnq39M7z0X7c2HJ1I3nLPZ+bRgLtp+8qgtjqxFe37McApXLc+/b7TynCbHrtDrl+f5zqDO/G8ZuSDTmbn+T9r/+H8ynaMdvqQu5u9wiix5lJ9TmTucyzN60OsD2u509hr+zvnw0Cxn/AT+fnXs5yxnyrvzaPtej+9yCu/ZxN/JvV3OsM7p9Lr3zG4nLTKFth9za7ezGPi/We6U2ONsfp1/n2/52x7nhYQfqXt8tM8Zu+F9Gs/P5u9zXoirSa/PvrTP+bJUDmo/x35nSdOqtJ93m/zolGx1gL873fvR8RcNo2OocP9HJ/nKsjfpXD496Mxqz/+tV3H7ISerTgydyx+5jjj3Rq/j399Sf3X82Pq0nxcW3HRSbjxEnf3UQ27RwvnjpWVtea7DY26LIbxN+5pl3AqDYuxzLc41yUXle74bzqU4d2fOgdukSzdY44TbyNoe545e35U68kgd9+oB/reJNfmMm+/Befqsz0vWc4/OnESv/6fhO27xZXOoX2v2jtvqYgptc3TlO+7ot96jPvJGgju400b+rWn9/9z0xT3p9XbD33OTs3n92fJsI7dpWR7/1iMau7XOD6btP9nWxD35BN/jFRt94A5rzv8tmX9yM/eVEtm0fZ3pzdzdc3mbESnN3SkzeL7tKtbKHTBkOI3DCx1au59N4rW38/o2br466bwWLUp0S+xcRdtnrkt0S+75gbb/5k6iO/QSr8P/e6K9e/nVrrT9qWbt3VMpC6jfz+7g9vynFm0/IeEj98/XetB+vnY7u1cqVqUubzq7TXPw3Bv3U2d31eQ/afufP+7uvlabf5c+OLO7e37UPjrftV53N8F5il6f4fV2B6V51ANy9XFlXcXuPZ2/Y+fd1dedMYV/K+jUq787feuv1MOfGugemH+U5l5MxYHukvffoGu94fFBbtxnx+l4Rr00yH22Lf83y/UuyW6FT7tQN1+R7E7N9T71TyuT3YJXN/Cz71iyW6oUr+dbbiS70z8dR6879we775zmdaZB7iHul9Xm0OvdNw51B5WsQj30lWHuN0m8to9vNMzt+AHvBzv8zpbibvm3pPy+oeZtilvj3Z/rSh/pO9IJt5F5m+KebsnrasOtKe6ZM/yb5O4io9yfH/BvREmZo91d/V7meZI91u1UJZ7XjaGT3FlXDtPrB9Z+635Rhv/9qO1vM90TNw/RPjtUn+Mub8K/dX/z1XK37RT+dyt4Y6U797U19HrXJivd6Z/I98l0d1GXyrKeq3NJd1MSamyTfvLtxU64jZxLuvt467b8W0SHte7Ml3PTta5XeZNbKPll2mfmsK3uTwNi+d7v7burF/Jc6t4Q51Ex2mef8wfdBgfm8nq19Bd3+pS/aPur235xR3SLpdcfVDzuvlezh/1uk+1+cLKi/Jaojjk72KdtV7ryVx2pj1/Pdut9yff+xzlPuhO/yE3X9LWUU+6zlfl3od0dzrjp9/m37jVnz7k53p1L7/XOXHTX7xnIa06da+6vzXza/mLM9WBu/PXiLbdK8m/0eoGNt90V8R/QZ9WseMet0OpV2udjD99z79RcTr287D33zNGCtM3py/fc0yX/pi6RGGOWFN1E/cObuczQqVnUo9fkMr0unbTXLtZ8CeXlt2ITjgO2jAO1K316Qjvqwj3ymTV1d1C/+UUBU34ory3nvo4ei71/b4582LxteA05d/Yx83Zn/nfSpzs+bpqdnc3fD/MWN/eOrqXXN04obp4rX4OOZ2X9Uqb0Jv53jZjkUib/lTJBB8dJXcxR7Uq/vISPs3jP0qbnwdfo2Ea8Usbk2fQ6db2EMqZkn1m0zzyNKpqeD9em47kyoKJJHs1dZWiVYP9Dsp4z005spn0O3l3NmDnsN56/XsP0n37ezqs483/lSsnzSI1nnJm9/7Ot0sNBvnfGqbGNM/UP8X9rnBj9snkwhu/Bsztqmx83ptA+3zlS21z5Oz99btlKrxpn64v0ehGnjvnp5Wza/k7W2+aV+P52HBJMlaKPe9LhuCWY8vvs8US7rxwPbVMseG/DTbzOdOzZ0FRN20998F7DYEwm9G1ktu3mf4+bMbmJOfwT/7v/rEFNTa+F62n7qkObBtsfbdrc3Bn+PG1zPLuF2XfpKztWiWZz+yeDDsct0cTKcUa7TzBuiWrcEk21G82p/3Mw0Yw61piuxdLN7YJ5mFS+q5lw/Qva5sDYrmaVz//+BbN6mOQR9/heSE4ye1baaxftcKySzFa5dtEeEYxVkhqrJLN/44fUS5P7mzyzvqT9fLy2v6l14DnqMkcHmILFeB0rXH2gkfs9NmeyadOZv9t0GZgcjFXvM4PNseb/0HvblB1i8jxz3X63HxJs0+79ISb535X0ubsmDzHetVl0Lqf9IWbAp1N5/Wk5zPT/7ir1gkkjzINyIM8R422T7+EpasxTTJ1zvbZKOzNlzFPUmKeYkQ/zXO1WNcW09HmeFM0z0rz6gNfnPp+NMYPPnKVjLnBljKn3zil6vca9MebuiEn0+uz1Y03XSeOpn/5hrOm7kc3A1ALjzKfVavKx1R1vtq59KujgOKPdcW3vrdIbl6Q54Tb2OKN9cVlLXlsajjfflh1Fx3C/2SRzs80Kev2LJ1NNQmN2BfnXpRq/ET/rG9yK9ht9aZvnH6QGY/7HtilBX/xzionL5dE2S16aZob1+I2O8+/B082arSPs+U43lxNm2nmVFr1fSgcdzrE007qvzLE0s2uOzLE0NcfSjL+Pn5WTms00n52vwt+9V800qWsn8nc5Z55pVpzX2MvH55nHOvA53p8/37Sf8BSvUVsXmCZdH/Okg2OIdrsKdjyj/eLCNCfcxh5DtDOe7EC9auCSYBwSayw1tVbzulQ7xzKzdvso2n+tD5eZK4V4jXqxVbTfjtB7Wy1fbqaU439LWnxwlfGmy28s6ebY60/Idwk1J9PV8yhdzcN0c/k5/g7fZ1O6eboo3wtH864xT+Xn/36p23aNGbf0Ozt/MkzMmYphB3MpI9w/tyu9qmcbXvNvZ5gCh/m+/qTgVvNhCV7Hln271TQcxJ9b7hvPLHN57f28TqbZu78QnWOLETvMjVz77HXMMhNNcU86nANZ6lmWpa57lhnbpzN1hdF7TPp5Pq9bLfaaIi3Y6dU/vNcMGcff0/xK+03l2tWpv6i239RZNpn68o4D5vN96+x1PGQS6tpjiHY4Bw6Fx8AdbB+J5/Wt2dTDpsgLlem88l47YhabDfT6mp+PmkH/8n/Pnk743cxY+Dmvh33+MGtK8xr4eN/jptTgcfK9y3zwQpmg1Xcwda2z1bXONr1H8zrTbl622TjmJ75/758I1nns70qxi2tf+qRpsnksHeecQSdNwQ/43n9r6SnzfXNeG3/fecrsvML3Piw5bf598mbQsj4nrDptSlzh30Zq7j1jDi7l58jQ+X+auP/yfzNmnPzTrPjPH7TPOYUumOrH59v5c9Gk57XjHO1wvl1U8+2imm8XzSVoSj2u9TXjZnam9w7vc83keekV6t33r5v1Bfj7Wy7npinyA1vHmY/+ZWq1XGDnzG0zsJQ892+rOXZbzbHbao7dNgc/+Jg6Z6U7ptDx7jzOJ+6YDdV4fMZ887fZ2fsX2mehoffNN6/tom1Sc/wb7LP4EzHxOxP5+8ATm2Pi89WZRp3aMkd8rSfs98w2+N/BqWJH46vL8z3a/eTZStvYY4t2/2ye/9OcnPHlyvambjIzZ/z8S5uor57LE1+9/VT5Hht/bUCpoNV32vjU4DtYbHz4HSw2/Kxol/2cvzcuLxIb/9fmbdS3a+aNn9rrWdrnCsgb//dx/h2pZmv8Nz0+9+P78sWvHjyUthn4Wf74CrmW8D5xHoVWOV6uHXa/Gx2Cji1XPeiL+/i5jy37xM5dNGfQwXlR22vKHXzu8mv/C1ofT7XZ5Y10uQtNgt60o2vQMq/s8cfbJnf9/aIKrrhrafTM0uicpdFdS+Pv8KojYac60uiupdFOS6O7lkZ3LY3WN9hP9DixxV1ji7vGFneNLe4aW9w17ce6a+ngmK27Dtses3XX2OKu6XOtu8YWd40t7hpb3DW2uGvap3XX0sExWHcdtj0G666xxV1ji7vGFneNLe4aW9w17ce6a+ngc627Dtt+rnXX2OKuscVdY4u7xhZ3jS3uGlvcNba4a2xx19jirulzrbuWDo7Tuuuw7XFad40t7hpb3DW2uGtscdfY4q6l0V1ji7vGFnctLfNQ3DW2uGueM+yupcM5lh0ev3XX0uiuscVdY4u7xhZ3jS3uGlvcNZ27dde0T+uupYNjsO46bD4GcdfY4q5pHKy7xhZ3TWNo3TXPE3bX0uG8ylLzKkvNK3bXNAesu8YWd40t7hpb3DXNZ+uuscVd8xxgdy0dzpkMNWcy1Jxhd40t7hpb3DW2uGtscdfY4q6xxV3zdWR3LR1e93R13dPVdWd3jS3uGlvcNba4a2xx19jirvk6sruWDq/1AnWtF4Sfa901trhrbHHX1NZd03yz7hpb3DVdC+uuscVd8/Vldy0dzoc0NR/S1Hxgd40t7hpb3DW2uGtscdfY4q5pTlp3jS3umq81u2vpcG6MV3NjvJob7K6xxV1ji7umdcy6a2xx19jirvn6sruWDudDipoPKWo+sLumOWDdNba4a2xx19jirmmts+4aW9w1trhrbHHX2OKu6Rytu+Zrwe5aOrx2SeraJalrx+4aW9y1NLprur+su8YWd40t7hpb3DUdm3XX2OKuscVdY4u7lpY1Wdw1jye7a+lw/BPV+Ceq8Wd3jS3uGlvcNba4a2xx19jirrHFXfP4sLuWDsczQY1nghpPdtfY4q7pvrDuGlvcNba4az5+dtfS4fnGqfONU+fL7hpb3DWtgdZdY4u7xhZ3Tedo3TWtgdZdY4u7xhZ3jS3uGlvcNba4az53dtfS4ViVUmNVSo0Vu2tscdfY4q6xxV3TPLTuGlvcNba4a2xx1zw+7K6l1XdFNZ6xajzZXdMaZd01trhrbHHX2OKuscVdY4u7xhZ3jS3uGlvcNba4a2xx19jirmkNse6aj5PdtbT6fkLuWhrddbhN8F2F3DW2uGtscdfY4q6xxV1ji7umtci6a2xx19LorrHFXWOLu+ZjYHctrZ6z5K6l0V2H2wTPXHLX2OKuscVd0zFYd01ro3XXtF5Zd03zzbprbHHX2OKu6Z617hpb3DW2uGtscdfY4q6xxV1ji7um+WPdNba4a7ofrbvGFnfN58vuWlo9g8hdS6O7DrcJnkfkrmkdsO4aW9w1trhrbHHX2OKuscVdY4u7xhZ3jS3uGlvcNc1h667pWlh3jS3umq6FddfY4q6xxV1ji7umtu6arrt119jirrHFXWOLu6bzsu4aW9w1zQ3rrrHFXWOLu8YWd40t7hpb3DW2uGtscdfY4q6xxV1ji7vGFneNLe4aW9w1XVPrrrHFXWOLu8YWd81zgN21tHqmkLuWRncdbhM8X8hdY4u7lkZ3Tedo3TVdd+uu6Tpad40t7hpb3DVdX+uupeWeEneNLe4aW9w1trhrGgfrrrHFXWOLu6a27pruBeuu6Tpad03nZd01trhrbHHXtD5Yd01rpnXX1NZdY4u7xhZ3TfeLdde8hrC7xhZ3TWuCddc0V627xhZ3jS3umua5ddfY4q6xxV1ji7umuWHdNba4a2xx19jirrHFXdN9ZN01jYN11zQ/rbumc7TumuawddfY4q6xxV1ji7vGFndN88q6a2xx17T+WHeNLe4aW9w1z1t219LorqXRXYfbBM8Uctd0zNZd03Fad40t7hpb3DW2uGtscdfY4q6xxV3TmmPdNR2zdde0Dlh3TWuRddd0H1l3jS3uGlvcNba4a2xx17TOWHeNLe6ajsG6a2xx19jirrHFXdO9Zt01zTfrrmnOWHdN94t119jirrHFXWOLu6axte4aW9w1trhrui+su6Z1wLprbHHX2OKuscVd8zXl30ODtudLba8dtT0GajvPqe1Y8X6OhG3HnNqeC7W97tR2nlPbe4R/v04N215r6jLJYdvx5+NppI6hjvrcSuqzCqv93/WCtvOK9zNbdbewg3uEji0SNs8f+7qjtnfVflTPdtXnuup4XHWcRh2/Uedl1PkaNQ5GjY9R42bUsRk1zkaNf9h2DbHXK2x7v/AxHAnbznM+nkth2znJ780RzjF77/B+eO6Ju8YWd40t7prmqnXXtI1119jirrHFXWOLu8YWd40t7hpb3DWtP9ZdY4u7xhZ3TeuDddfY4q7tGuLIHBB3jS3uGlvcNba4a2xx19jirrHFXWOLu6Z737prbHHX2OKuscVd03pr3TW2uGv6LOuuscVdY4u7pvO17hpb3DW2uGta66y7xhZ3TWNi3TW9bt01XTvrrrHFXdP6Zt01rY3WXdOab901trhrnj/srqXD+5HdtTS663Abvh/FXdPnWneNLe6arqN119jirrHFXWOLu8YWd40t7hpb3DW2uGvaxrprbHHX2OKuscVdY4u7xhZ3jS3uGlvcNc1P666xxV3T9bXuGlvcNba4a2xx19jirrHFXWOLu8YWd40t7hpb3DW2uGu67tZdY4u7xhZ3Tedi3TW2uGtscdc0r6y7xhZ3TWNo3bW0rC3irmkdsO6a5wa7a+lwLrG7lkZ3HW4jazu7a2xx19jirrHFXWOLu8YWd40t7hpb3DW2uGtscdd0X1t3jS3uGlvcNY2bddfY4q6xxV1ji7umNcq6axpP665pjbXumtYi666xxV1ji7vGFneNLe4aW9w1trhrbHHX2OKuaX2z7prWSeuuscVdY4u7xhZ3TfPfumtpdNfY4q6xxV3T+mbdNV1T666xxV1ji7vGFneNLe4aW9w17ce6a7pe1l1ji7umdcO6a2xx19jirul+t+5aOvzOxu5aOpy37K6l0V2H28i8ZXdN65J119jirrHFXdM8se6a1g3rrrHFXdP9aN01trhrmhvWXWOLu8YWd23XZ3LX0mo9J3ctje463EbOhd01trhrbHHXNFetu6Z737prGnPrrrHFXdN6Zd01trhrbHHX/LnsrqXDY84O9inuWhrdNba4a2xx17QmWHdN18K6a1pPrLum9dm6a1pzrLvGFneNLe4aW9w1trhrbHHX2OKuscVdY4u7xhZ3jS3ums+L3bV0OA7srlXL78zkrrHFXWOLu8YWd40t7ppet+4aW9w1trhrbHHX2OKu6XOtu5YOjtO6a9WuNLprbHHXdC9Yd01zzLprbHHX2OKuscVdY4u7xhZ3jS3umseH3bW0eh6Ru5ZG8xNuEzyPyF1ji7vGFneNLe4aW9w1trhrbHHXPA7srqXDcWN3Ld1Xjse6a2l019jirmkNt+4aW9w1reHWXWOLu8YWd40t7pruI+uu+dzZXUuH48buWrpPMG6JatzYXWOLu8YWd03roXXXtO5Zd01rmnXXfL7srqXDsWJ3LT0iGKskNVbsrulzrbum9cG6a2xx13TvWHeNLe4aW9w1trhrbHHX2OKuscVdY4u7pnXAumtaf6y7xhZ3zePG7lpaPYPIXUujuw63CZ5B5K6xxV1ji7umNdm6a1rHrLvGFneNLe6a1gTrrrHFXdNnWXctHRynddfS6K7DbexxWndNa4t119jirrHFXWOLu8YWd033uHXX2OKuad227prWMeuuscVd8/myu+Z5wu5aOpxj7K6l0V2H28gcY3eNLe4aW9w1trhrbHHXdL7WXdN+rLuWDo7BumtpdNfhNvYYrLvGFneNLe4aW9w1trhrbHHX2OKuscVd87xidy2tvkuo51G6mofsrmm+WXdN64x119jirnk+sLsOOphLGeH+rbuWRndNa75119jirrHFXWOLu8YWd40t7pqvI7tr6XAOZKlnWZa67uyu6Vpbd40t7hpb3DW2uGua29Zd03yw7pqvI7tr6XAOHAqPwbpraXTXtP5Yd40t7prWGeuuaf2x7prWQ+uuscVd87Vjdy2tvoOpa52trjW7a1r3rLumc7TuWhrdNba4a2xx19jirrHFXWOLu5aW9VncNba4a2xx19jirumzrLvm+cPuWjqcbxfVfLuo5hu7a2xx19jirrHFXWOLu8YWd81zht21dDjHbqs5dlvNMXbX2OKuaZytu8YWd40t7hpb3DW2uGtscde0jXXX9FnWXUtXl+e7ddfhNvbYrLvGFneNLe4aW9w1zxN219LqOy25a+nwO1hs+FnWXWOLu8YWd40t7prmg3XX2OKuscVd0z6tu5aWayfuWhrdtTS6a2nZp7jrYJ9yXtZdqw4+F921tD4edNfS6K6l0V1Ly7wSd23bumtQ7hqUuwblrkG5a1DuOuhI2PjbOyh3Dcpdg3LXoNw1KHcNyl2Dcteg3DUodw3KXYNy1+CG7po7OObAXUvbYw7cNSh3Dcpdg3LXoNw1KHcNyl2Dcteg3DUodw3KXYNy16DcNSh3Dcpdg3LXoNw1KHcNyl0HHQnbfm7grkG5a1DuGpS7BuWuQblrUO4alLsG5a5BuWtQ7hqUuw46ErY9zsBdg3LXoNw1KHcNyl2Dcteg3DUodw3KXYNy16DcNSh3jXNG3DV3OMeyw+MP3DU3u2tQ7hqUuwblrkG5a1DuGpS7BuWuQblrUO4alLsG5a5BuWtQ7hqUuwblrkG5a1DuOuhI2DKvxF2Dcteg3DUodw3KXYNy16DcNSh3DcpdBx0JW+aMuGtQ7hqUuwblrkG5a1DuGpS7xuso7po7vO7p6rqnq+su7hqUuwblrkG5a1DuGpS7BuWuQblrUO4alLsG5a5BuWtQ7hqUuwblrkG5a1DuGpS7BuWuQbnroCNhy3wQdw3KXYNy16DcNSh3Dcpdg3LXoNw1KHcNyl0HHQlb5oa4a1DuGpS7BuWuQblrUO4ar6+4a+5wPqSo+ZCi5oO4a1DuGpS7BuWuQblrUO4alLsG5a5BuWtQ7hqUuwblrkG566AjYcu1E3cNyl2Dcteg3DUodw3KXYNy16DcNSh3Dcpdg3LXoNw1KHeN4ynumjsc/0Q1/olq/MVdg3LXoNw1KHcNyl2Dcteg3DUodw3KXQcdCVvGU9w1KHcNyl2Dcteg3DUev7hr7vB849T5xqnzFXcNyl2Dcteg3DUodw3KXYNy16DcNSh3Dcpdg3LXoNw1KHcNyl0HHQlbxkrcNSh3Dcpdg3LXoNw1KHcNyl2Dctf03c+6a271XVGNZ6waT3HXoNw1KHcNyl2Dcteg3DUodw3KXYNy16DcNSh3Dcpdg3LXoNw1fd+w7ppbfT+x7pqb3bVsE3xXse4alLsG5a5BuWtQ7hqUuwblrkG5a1DuGpS7BuWu6blp3TW3es5ad83N7lq2CZ651l2Dcteg3DUodw3KXYNy16DcNSh3Dcpdg3LXoNw1KHcNyl2Dcteg3DUodw3KXYNy16DcNSh3Tc8U66651TPIumtudteyTfA8su4alLsG5a5BuWtQ7hqUuwblrkG5a1DuGpS7BuWuQblrUO4alLsG5a5BuWtQ7hqUuwblrkG5a1DuGpS7BuWuQblrUO4alLsG5a5BuWtQ7hqUuwblrkG5a1DuGpS7BuWuQblrUO4alLsG5a5BuWtQ7hqUuwblrukZYd01t3qmWHfNze5atgmeL9Zdg3LXoNw1KHcNyl2Dcteg3DUodw3KXYNy16DcNSh3Dcpdg3LXoNw1KHcNyl2Dcteg3DUodw3KXYNy16DcNSh3Dcpdg3LXoNw1KHcNyl2Dcteg3DUodw3KXYNy16DcNSh3Dcpdg3LXoNw1KHcNyl2Dcteg3DUodw3KXYNy16DcNSh3Dcpdg3LXoNw1KHcNyl2Dcteg3DUodw3KXYNy1/SMiKhninXX3OyuZZvgmWLdNSh3Dcpdg3LXoNw1KHcNyl2Dcteg3DUodw3KXYNy16DcNSh3Dcpdg3LXoNw1KHcNyl2Dcteg3DUodw3KXYNy16DcNSh3Dcpdg3LXoNw1KHcNyl2Dcteg3DUodw3KXYNy16DcNSh3Dcpd4zWNiQl+C2UfG7a9dtbT+kHbeW79bdh2vlmvG7Y9F+t7w7bz3HrgsO1YWT8cdpnksO34W4esjqGO+txK6rMKq/3f9YK284r3M1t1t7CDe4SOLRI2zx/7uqO2d9V+VM921ee66nhcdZxGHb9R52XU+Ro1DkaNj1HjZtSxGTXORo1/2HYNsdcrbHu/8DEcCdvOcz6eS2HbOcnvzRHOMXvv8H547oXuGpS7BuWuQblrUO4alLsG5a5BuWtQ7hqUuwblrkG5a1DuGpS7BuWuQblrUO4alLsG5a5BuWtQ7hqUuwblrkG5a1DuGpS7BuWuQblrUO4alLsG5a5BuWtQ7hqUuwblrkG5a1DuGpS7BuWuQblrUO4alLsG5a5BuWtQ7hqUuwblrukZZN01d3g/irvmZnct2/D9GLprUO4alLsG5a5BuWtQ7hqUuwblrkG5a1DuGpS7BuWuQblrUO4alLsG5a5BuWtQ7hqUuwblrkG5a1DuGpS7BuWuQblrUO4alLsG5a5BuWtQ7hqUuwblrkG5a1DuGpS7BuWuQblrUO4alLsG5a5BuWtQ7hqUuwblrul7u3XX3OFcEnfNze5atpG1Xdw1KHcNyl2Dcteg3DUodw3KXYNy16DcNSh3Dcpdg3LXoNw1KHcNyl2Dcteg3DUodw3KXYNy16DcNSh3Dcpdg3LXoNw1KHcNyl2Dcteg3DUodw3KXYNy16DcNSh3Dcpdg3LXoNw1KHcNyl2Dcteg3DUodw3KXYNy16DcNSh3Dcpdg3LXoNw1KHcNyl2Dcteg3DX9XmHdNXc4b8Vdc7O7lm1k3oq7BuWuQblrUO4alLsG5a5BuWtQ7hqUuwblrkG5a1DumtZn66651Xpu3TU3u2vZRs5F3DUodw3KXYNy16DcNSh3Dcpdg3LXoNw1KHdNvw1ad80dHnN2sM/QXXOzuwblrkG5a1DuGpS7BuWuQblrUO4alLsG5a5BuWtQ7hqUuwblrkG5a1DuGpS7BuWu6Xdg6665w3EQdx20/M5s3TUodw3KXYNy16DcNSh3Dcpdg3LXoNw1KHcNyl2DctfSxRzVrjS7a1DuGpS7BuWuQblrUO4alLsG5a5BuWtQ7pqeKdZdc6vnkXXX3Gx+ZJvgeWTdNSh3Dcpdg3LXoNw1KHcNyl2Dcteg3DUodw3KXcs2xYL3srsG5a5BuWtQ7hqUuwblrkG5a1DuGpS7xnMXd80djpu4a+4+wbglqnETdw3KXYNy16DcNSh3Dcpdg3LXoNw1KHcNyl3LNjJW4q5BuWtQ7hqUuwblrkG5a1DuGpS7BuWuQblrCNz1/wPlaWPceJztm2dUF8fXx3+IEVH+0YhdUGLF3rDGELM7RCUx6l9ExQp27BVRkaagYsBGUSkCiqAIKkUBFdgdLIBiL7GBCCqiiNiiGJ/dOzO78+J5+7x7fufknM+Zc/fOnTvfubMuN0ePxIkFoT5Iro7GRxUuwz7IY8U+WeX0aZvQ+gNvgOOD/dC3jnGiygaDP5JzzWXGBkOIxNj2+cocxkJUhKDbNNee3fL9YuDFPf3RNLwEuGm9LeinbzsghrWrtiPv8mdI5YZV29HIUU9hvF/tdvTZLxjGYzIC0aLgXcA/ng9E7lkbIJ59DYPQit4DSGzDd6GcU+001uJUeN6p1TmMs47ROMGGxqlwZfI04Kzxu9De9tsghq9OwejdzBMwvqFNCLKfYIAYGpwOQdghCHjMB4V/cQebXt9CVJ/g/3FumMaVL8KQjbEMNscG7Ueblj2AOP/xDkfpOX50veHotX0Uid8rAuUWttVYW4vCM9xX5TAuiKVrARu6FoVxkQtwsFMUWlXRDfx0TolCIaf2AO8UDiGnluvA5nXxIdRsDlnj18OH0ezd7WBdhpx45LiomcxYi0HhWZ1pPhXun0BjABsag8LZbeYAp2w8puXBuV8SGpjWANY71CgZnbqwDfwPnJyMqhr3B+4/XeEREjw7/fhxFNbRHOJJvJGC5PDFVFep6OHPrWXGuiZTtbkoa/aveywCXnsmFf3Y9CTwvfrpqF0DI4hnuEs6Cko6QPWTjQzlXXTWtJSt+ycsMk5ZPhPY+2M2anh7Kzy7xCwHTW7VCzh5bw4a70nm7bhTRsnieuA1tnnoytXGsMapfhdRjXER3cd8tAe1lBnrGsjXYyCs2QeudQXuHHAZpVaQdX2YegWZT3WD8dG3ryCfoHDwia2voq5D+wJv6H0V2SaHAr++eB2tKTpN9/EWsh9OY1BY18AtPQbCmr1kNxnYad9tZN6nK6yrfvUdlIgyYTz97j3k+e8PpP7YP0KRCWtgPGntY5TetgfM1cK9GFl6B9H9LUGT+lhprO91CbfXJdxel6DVAaTOzDpUgrK23yTn9+sTZDhglsf4gGUNxDC7bSlyPBsIccZ6liKzSeTs/5b0FB2dQmrjo0tP0aUqcvbjjpWhf9u801jxaaeyfUoZalUVAOMDrpSjG0kbYF7fwy+Qze+bwGd26Qt04j+PwWds45eob/Fhqp9KlFqf5llhXW+VnN4qOb1VoldxE4GDZlQjMc8Vnt28thrVGzQEuPDrW5TRsBTmNRbeIfPzTyG2qB/eo4HT4qlmPqKNli1kxrrGPnIa+8hp7CO6MWkBcB3rT6hx8VKS5yefUGZvkp/tO/9Bl1b/DT4b+35FO4cVgE2I0b+az5atDXaXnCPBpvVZg52p7X7gkGlGdgNbdyLxzDSy0+JRuG8RrXsKr4ujNQdsaGwKry8h+t8v1LHr2H41sGNUHbvDr84Av3lez67v7H1USyZ21R6WGuu6MrELuUrnUngzmwtsmMZM7NqvmQV83NzE7v3ZXOCPA+rb7VvZHXyeiKtv90/xChgfMMPUjq29uMjULs3bF2w2rmpg19n4GPGp6IjpU2W2dyqvq5mjsUnHvhpXFn2RGTOfKtdtWkdjbV3AdE8Ja/Mer/5TYz6e3jGdEOOOLx01PnNxkcZMVzR+O8p58J/hM3CydzFm7L5gpsZL7FJlxkNnOGisxMazpHOIwPhQikFkfKvbJo17df2o8Y5uSxHj76yeakzW/1mcUtpAe3b2mgZaPPdq6mtxrguun/d8fxew2ehUP2//aDcSm8Ekb1zdhRprMROWdKYxK+zi3Br8rJpWLw97RpN5e9bLe9X9Cjw7OPq7vBOLL8P4e7FO3uufewG7PjDKs/i8FmzCPIzyPkS4kTXONMpzP7FcZqzFQFjSmcag8ri28GwPa6O83p6ZYH8u9BsOTJ0P6w2Z9gWXFKyFXPlVfsKOnqVgX+z1EWv7qHAr77kyY21ewpLOdF6Fz/n8AH5W237EbC9+H/0BHwjMg2fHo/e4We02sFksvMPrHvsDd/GtwSta9AD+oewtXve3J9ijo2/x4RE3gceYV+Oqzcbgc1jjV/jF/dZkr4dX4nFoqcxYi5OwpDONU+GfdjWGuZ7tL8fSZjLX2D3lOP7OdvBpY1qOTy/1gjxUm5fhJnsDwN6r41PMNK9y+acasEk+WYp/mnAJ/JgtLMVdyj4gxkyH8xaU4jHPyF4bd3+C2wWlUC2V4Hdzpmisa6xEjx+YaawEL7hjBX4cPYux28IoYIu6xfhp280Qz/d97+GXfd6CH9+Fd/DDvBiwGTf1Nk6puwlsnuXewgONOxGN5dzCp0yozhXWYiAs6Uxi2OR2A58fGwQ20qQb+E2oF3By8xs4IIzsr93kAoxH34fx6qp8fDDjM5nLKx9bTXWSGeu6yud0lc/pKh/X29YInh3TPh8fGZQF9unoIl4aUgvjNSgPn61dB3zYGeMjdfsTPU/OwQkm7mD/rl8OrhkfTrWRjQfnLNFY10w2p5lsTjPZWDBqCT4rDp7Bza9GANu+PoUv+JlCPr9cT8cTptcHTkJpOHuGJWjA3zwNn6gXAvZ7PFPxonhSZ5T3VdxwD9v3VG7fU7l9T+X2PRVfbN8Rnp2Qm4IzMv3A/7XnJ/GnTWnw7PSBydg+9ghw+eIknBC2AXja2GP4zZhoutfxuMZ0psxY3+t4bq/j9XkV7rzUEp59NO0QrptggHnfDDmED3XoB+NvPA5id8fNwL4PIvEHx1Pgc05oJE53WglcvDwSH7BoCPmpvBeBe2Zk0X2PwEPdFmqs6yGC00MEp4cI3Hd+E5iraZ1QHHKhOfjsfCIETzr8AcYTx4RgHFsKcZp4BOPn03fBuFv7YLz87W7g6gd7cI+T3YF/3b0bJzrupvVkF/4SSOuewro2dnHa2MVpYxfuGNUG/Mwq3YEN+3ZAPM0rAnGnC0dJHTsciK+7egD/EvQXjjArA5uXLbZiS29fUm8N/jj6V2eZsa4Hf04P/pwe/PHYZz/CvNfM/PDDK9bAr70345OH6sNa/h60Gde2vQB+EtpsxhdEcjbHBvvimLkvYbys2AebJCRBDOcaeOMOXYPBZqiJB478qQZ4/6P1eFf6erCfleSOm36JpHvkhk+/maexvndu3N65cXvnhg/bkTvC5dhirZaqPOeFEXDFvkU4zZhoO2zCImyathm4f4+FOCTNE54dILhisy1Ee/vL5+GsZ9/AZm3wbPw45l/gU9mz8KBXW4BrfVxweWcTO8asJntOcMEe4+vQ/DvjfMzOozOXf2cu/85c/p3x5PqkJohzpuJuj8i5C544EZd9R/ZabuyAAy0fgE1+xHhs1pXcEeF+/8Vywn4Y//mYPTY61pHWRnucPYbl057Lpz2XT3sun/b49osO8OyFWaNwwEByTzXtJ+CvY3+HdfUdOQQHmWwEPyUZg3Gi0zm6LhtcZbZEY329Ntx6bbj12uAA1BT8n1nZG1vuJXex7fRe2Hj0CJjLvWlP/ObyVrDpYNMDV6R8hvGfW3XD/Qb1JTUw3Rr/6jYCno2JtsauC8l7Ucu4jvjhy2SwP3G5A46qHQS8e48VPjmL1K4/FrfFKx1+JOfUyxKvq0PvfYX1XFlyubLkcmWJf89sBX6uBrbCHnZEz++mtsQr65FatOnHH/D+kjTwX9GuER5pdxn4h0dm+E4pubvvVjTEme8wjN+60hDPkoJpPTfBCc6zZMbcuyKXTxMunyY4eT6pqyZN6uLkU3Ngvc2e1cFi9Vngdtaf5a8JEviZW1sjMz/3vatll6ex8GyU8Ea++Ii8wwzZUyWfjXgIz35eUymndwkBXrjzpVzU0RRi7uhUIVduKIRx+8znctlVUj/vZZTJj9+SWvS6rEQeOvwejb9ElpOWasy9n8gfEiPY+4l8IXL1cN1Ge1eRm/sTfa6Z+bfcbV02sNmJu3JIL2M47+vM78jedQbA+HjPs3L1yokQZ+qSM/K0zQHAQ+dnyd3nHQbeF6+8z9K6ofLNRvWBZ4SflrfWdQSbrPNpcm8XD3afyuvvuWvM3bOyyQEWf6r8zLBquG6j3bly6T99ILYuc0/IdTc9Av/bbyfLDf1JzPtWJMkT47NJbXyXIFfHvyP1alSC7LuS8NXZcfKRJqHAS7vEyXOvewM7rIuWb/S3gJw3NY3W9vfK3Ei576d6UKOaD42UWb3acD1CfrLeHJ5F88Nlk3OHIYa6Rvu0Z6M77JI/3X5G9FO1Xc6ojAROnL9d7nTiT3IeF22RK8ysyfu5n79sNeYdu4Nkky1z2b3D5cpffnCK5cpfDviyZrhuo91Hcr8fLSAe95d+8rmzR4Eb3tosvxt5grxLT90kX3pMamCPtr6yWUx/GN/2wEvulDAc2DjNS3b+/hjwyBkb5K5ZEsRZOmWDfKXO38AfotxltygfsLEJWStb+RYQDecsl2/YkLM5q95yeemD72A8cNwyOfrpPuCrVsvk2IBksNl7Y5G86egTGM81LJRbeH+DmKffnydbzCL5n14wT/7c4CPYbO8+T/5gWg3xr3zoIv+7ozv4aRPrIq9/mwJc/tFZnlxQDzS57ZmzHFjtAc82Xj1Dnh99Abi/xQy5ydAb5P4SpstPUmvg2SDr6fLtfPIuPWGPk3z30FUY/9Rykjz4ViKMW9hOlKtezwY/KeWO8rrETOD2OybIF6q9wL6w/QT55jKiT6dJY2XTN9uBHx0dLff5dTLYnO44Wl5w+g48m9npDzn+SSDw+WH2ctBvRKuGAlv5c7MQ4EP7hsqnu5I72tViiDxxVxWMj7poI5+wKiH2Bhs5dCOrgTacfmxki2CmHxvZLXbFcN1Gu1/kYRdIPawa2FM74ypHl5kCt3/XTR79nLwP2FR0lvM7zSf7GNxZjs05BOz9prW8dZYB9u59RWs5tI0djOeWN5IflpvaMWZnyqXN99rZadnmhcT4p6D70r+TG8Czi53uSmuL2pI8TLwrLXvXAXKV3+W2FNE8CGKeEnlLalZJaumUK9el2IQZ5E7MuC5NSSTn8dM/V6UUr2rgqhdXpc9/JUF+Bk4tkpqsITGL769IhYMQqQ9phVJNNNkXs7mFUljr3whPLZRMOx0BNulVKPX2jiPvOeMLpKJEkp/S0QVS4PpymdSQS5L9R1IHYsMuSjb1roFNYtEFqaf7Y+Btueelbb0zwOaHD1jqWngReNd9STIUNyE6t8+V6u4uhPUun5ktmbwk7y1WY7Kl089vg/38K2ekpCZviDYun5HO2xLNJDc4I+1qvADGn2VmSrvnk3PdKCRTMgy/An529FXY6xX4KS/KkE5trA85cWiWIRneHCD6bHVaMgSnkzX+57QUso7U/8x2pyRDjjXY/BaYrsR8lLz/vE6Teru2A//TjqdJyy+Su2zdwTTJKN8P9rr9wjTJcJX4vDwiTV0vqT+LUyXDAXJGemanSJWtyDcB8ycpUsen7N0pVeLuFElYsp/dKdL0+1XZuo12p0iPR5pDPJnjUpSYc2HevkuOS4aZruTd40CykocY8Bk1UuHjJIfn+iQp4w4Qw5FviWrMwB1WH5Fu1SHndMaQI6o95K3xwATVD8xl3uKwmmfw+WjMIcnQOIDUoq8HlTXaAu89CAx+ul2PltzOLYFnQwdEKz7JO4P17EiVwSY+Rz3T6k+pM+Hhaq5g/MlrJQc7SF1tXLNXMlibQPw1a4EhNjxlr7pesBk0YS/NmXLWBu1VnyV6cwxT95RopnOYmkOwH5geqtrDWuqYhKqaAZvq68HqvgPXbb9bzS3RQKOdkmHZJ+BL77dLBitSJzfibeo4cGyjbWpOgFvWblH1BhyAPNWcA589+qfE6tKxmvoSqyGQAvYtVP3R9QLTvQOmMQBTnQPTXBE/d3SmOQemawGm+w5MdQ5MzwjZkxCd6V4DW3npTPNP4nHgYrDl5rXm5mrC+f8sa0x1RfzEcLxYZ+2MQGySzkQ/dFzg7EXOD8cxIjevyMUjcnEiLn7ErQtx60VcHhCXH8TlDXGxIS7POlO90X3h5s3VmZ4XEsMdnanOSTyvdKaaJM8a6RqjZ4f4Idp7lGYsMPZp8ZfA4u/XaLfA5j1Wskdg++gzLFhgGnD9TWGq1dHmSu6pflKmhQosnmvuClP9zO4cJrD1DlmtMNVzh/y9AtuLLRb7BKaH/+YrTNfoVHe/wNbi8TVcYDpXaojA9q9XRqTA9Lze/oDA9F9giBbYvn8nK0z36+7IGIGdu+w7BwWWnxEvDwpsj1ZEHRLYWbv04ZDAchv0MU5gWj04MF5g5/TCXIWpNs75xAvsbNptiRcmiOTZ7JIEgZ2v4k5HBaarh2cUptpzEhIFppnNF5MFpo1DtcmCVusWHxfYOXL5+YTA9BY/9YTAzriL2UmhjkS05PPrSYGdzT/mnBSaPyZ3UN8tJwV2lgfWTxGY5pV7SlDuKZir+8sUQT/jqYJyB7E7S9DPY6qg3Fm/MFbuMkG3IedRuTcF5d6EceVuFZS7Ffy83JkusBrVa2em4NlMArbPzBSsH5F/U6MLmcLY5SvAT++kLGH9GnK/j8nIEti5CG1/RqjouwCefa7w2dt7gMfHnhVWmBmDfei2cwKrRZevZQtNenaCGEqmy4LjwyoYf30IC56u5G8ZxnF5QlTGC/C/60uecG/OVuDm+KJgfuwHck/lXRReRy6DcQ+XS8IVRN45v/fNF3btJu9XD+/mC2F/HAL7lS0KhCaXz5B3crlA2OSaCuNyh0IhQgoD++0fCoXEOPJvlk+tLgtnfybf56c9uCz0sb8GvGxukRCYOQ7yuepwkdDHZgCMx7wqErZaGgFjo6vCsYk9wc8fjtcEi+nXybtT7TUBH9kEMXT+ek3wqkr+Fday4oYQPZv8W6/LhVtCvq0B1vLY+I5QG3Aa8u8Scl/AJqPBT5/4d4J/zXfAJe2+E5s2aWDHmNWWHnOaiVN9iM3sAVZiZ08DvddsROTVlL3ni7qWbMRLdTbmMm47Jl3QbVhttxEDMhYBS41sxTfXyd8m0k2RaPqtAuZaYzFSvBcVDOP/GT9KbJkcCzzMaZQ4vdIfbO6dHCUG/DYW+M4v9qL3/CzwuSfjTzE1cTmMz9o8VvQqIfXnXHcHcWJ7kv8ZfhPEgRXeYL8k11EsbU3OeBeHSeKmKeTfkg1CncQhrUrA3jbcSSw8SGz8/KeIYZFEbwXNp4sePpshD33mzBBXBZPa65oxUzS1TSW16Iiz2OpSCtjnnXYWLS6fB/udn5xF31ekDv/Zerb4+qdFYP/Uabb41D8eeFzJHHH5l4Fgv9t+rvhi2DLws0N0Fau69ATuhFzFiUZEe0E3XcWU0Bdgf3fBUnHYUPJd+kbUUrFiWxGs95S8VLQX2sF4pLxa9IyQgT2M14qsrqq8Opy8Y9cvcBcjw8i3gvkr14vhOfeBN7fbKF4/fA+0Z+iyUTw27hfY68wWnqLNqmKIZ9sgT7G7C/k3y9uFXmLnFQuBp5zwEvcZjwO+edJLNHuTSe6+h16ipSWp5+dqvMTwFUEwLnz1FkeVkTozpq6PuLV3LIwvzfIVPS26AfsO2STudCO1fZfDJnHeJOJHZf2dzV8896+FzFjXrb/Y74+7wxnfcd8i6DZMt/5i2TRSV8fn+Ivl5eSbZKH5NvHuN/KNyC0vQCxYN5jopCRQnN/NjtQN32Axuuo2jF8/tVfcYEX+fuTyIEp88u4W+JzTN1Y87ki+de/867joEkb+bhX3y0nx4LB0GF/keFIMX8LeJ1PFIwu7snrOrSVV9Lfvl8u4zYhEQbdha0kVW8xwAd4/55QYNbgu7PXIrmfExl6DwWfephzxpocJOfursZiWQLS0dLyqo+bgc23FDXHM9YOkXiX9LYaHvQf7N7l/i36LTWD8W5diceyAZfTdpkScVNpFZqzHXKL5pCwy7vrXPODityXiyK3k7C+oUyru2VAX9nSY/1Oxe1fyXahwTrmY+vUc+E9/9lw0+uMgPCuXV4oZlzeSmmNbLd53wmBfaXiraeN9/w9iN68HMN4w66N4wm4SzDWgyyex8/SfwGez72vFTwOOAx9vXyuW3zMDm7LXtWKZxT/ArZwN6FjTM8DnfzVGvvvygQPSjdHKV6V070zQ1rhOMmM9DyqzPACLjMt2zwJusswUpQ+/CPzrhoaoky+pLc93mCF2ft9t+R6NQKSGPH/WDI1wXQf2P85rgZyexZD3w/otUe29UzCetbsl6tGpH8RzcrQlanuG/F3D4GWJGlRZaazFCdxc4FhkPPgYibPl8rZo+Y1hEJvfECtU78zPwCPtrZDF2mjwWc+hC1r+/VCIp8qjC/IKINzNt5vm3ye/B9r/5Cz49C7sjVAs6d/o9bYfWh9eQXVlg/7b0ZLdR1w+bVDM1VU5jNWeH91Gu4/Q6Fvk3xpPAgajb9vJGXx2cSi6luUPPkfdGYqq/mkA87a3/gkJOf1h3FywRTcHl4D9p/wRaIjdepoHe9StaQuZsZ43e9SpiMajsDuLB2yaa8+OP0PqzLzl41HPiKvAN2rHaznZ7e6AcgsjwX9kqCO6fZP83T/acyJamZAB9j19J2r29yZOQZ829wKb4pKpqOjVXzRXzujs7DYa63lzRiYsToXXanlz5vLmjHrXTAH+zw1ntO3hBNiLpLOzNB26dVqEdr/dADbXAxehFEz+/hUXvQx5+dWSs+Dlhi6fpHunsJ4rN5TD9k5hPy1Xblyu3NDVrMnASV7rUb3oreBnwan1aOD1HsBW9zyQWXNSx5r03YjYeTep44VmupJ3m4UbvbRcrS73Rg+nfIFnZ7b3QfU6vKXv9j6azaxxPsjr35MwL+u7hjpA+66h/tC+a5VZ3zXJG+m7ZszdQdB3zVjtu9ZttDsI+q5VZn3XKrO+a6jJtO8a6hjtu1aZ9V2rzPquoSbQvmuVWd81zEX7rhlrcdK+a8Zq37VuQ+OkfddQW2jftcqs71pl1netMuu7Vpn1XcMZp33XKrO+a6jbtO8a6hjtu1aZ9V2T9ZK+a6IT0nfNWNcY6btmrPZd6zZMY6TvWmXWd60y67tWmfVdq8z6rmG9tO8a/NC+a8ZaDLTvmrHad63b0Bho37XKrO9aZdZ3rTLru1aZ9V2rzPquVWZ91yqzvmuiK9J3zZh7l+Duo1ROh6TvGvRG+66hztC+a5VZ3zXRA+m71ljTUrbun/ZdM1b7rqHm075rlVnftcqs71pl1netMuu7Vpn1XZN9JH3XjHUN5HN3WT6376TvGvaa9l2rzPquVWZ91yqzvmvQNu27Bj3Qvmuyj6TvmrGugVt6DLTvmrHadw31h/Zdq8z6rqHO0L5rqD+07xrqIe27Vpn1XZO9I33XjLl3MG6vS7i9Jn3XUPdo3zWskfZdM1b7rlVmfdcqs75rlVnftcqs71pl1nfNmNVn1netMuu7Vpn1XavM+q5hLtp3TfRD+q4Z63qr5PRWyemN9F2rzPquVWZ91yqzvmuVWd+1yqzvmmiG9F0z1jX2kdPYR05jpO9aZdZ3DXmmfdcqs75rlVnftcqs71pl1netMuu7Bhvadw1z0b5rxn3Z/U77rnUbGhvtu1aZ9V2rzPquVWZ910QnpO+aMfdOC33XjPV3MBN9Ltp3rTLru1aZ9V2rzPquQQ+071pl1netMuu7Bp+075ox2zvWd81Y7btmrPZdM2Y+Wd+15pOti/Zdc6zNq/ZdM+bjUfuuGat914zVvmvGTFes75rkx0D/1kB/8P2W/uAbJv3Bt1n6g++f9AffM+kPvsGyZwt1hu949AffIekPvs3SH3wrZr8QneFbMf3Bd2b6g++TLB4HLgZbbl5rbq4mnH/1Gyn9wbdl5ieG48U6w98atNgkw//6CxE4e5Hzw3GMzvB9W4tHZ/jeq8WvM3wTZn4cdIZv1/QH3+rpD779arHpDN+x2VxHdYbvyWzeXJ3hmz+L4Y7O8B2exfNKZ/gezp5Vzzz9wbd05seM57yjRzqL1EZnRXsaK9rTWNGexor2NFa0pz9bqLOiPY0V7WmsaE9jRXsaK9rTWNGexor2NFa0p8fjwMVgy81rzc3VhPP/WdZY0Z7uJ4bjxTor2uNik3Q2GLhxgbMXOT8cx4jcvCIXj8jFibj4EbcuxK0XcXlAXH4QlzfExYa4PCMu/zor2uP2S2dFe9z+6qxoj9ODzor2OP3YcbrSGf5/E43J/ztDbHQG7cVx2ovjtBfHaS+O0x57tlBn0F4cp704TntxnPbiOO3FcdqL47QXx2mPxePAxWDLzWvNzdWE8/9Z1hi0x/zEcLxYZ9CeFpuks6o9bVzg7EXOD8cxIjevyMUjcnEiLn7ErQtx60VcHhCXH8TlDXGxIS7PiMu/zqA9bb90Bu1p+6szaE/Tg86gPU0/dpyudGb/rxPh///7Pvj5/7/v0/3S+f/w7/v/Azuk3OA=BQAAAACAAADAOgAATRoAAAgbAAAyGwAAIxoAALEMAAA=eJx1nXX0FVXYhefembkXEBlFUBQUbEVEQgxAREQQsUVURGwMUBGxEbu7u7u7u1sRuwsFA1tM8Fvrcz/fWmd/r/7zLPXd+54558zsc8/M/c1xtex//7lVfEz8RfxV3LT8lweKJ4iPiI+KV5jfz+Y33nweNp+9a6nPg+JP5tevTP2OFh8y3yNUf4/5/Wi+66v+sP/wO7n6l3eY3w/mN9l8TqpS/cGqu6mW+n1vfutIv1+Z+p5Ypb4Hqf4G8/3OfAdLP8l8T6hS36NVf6H5zjLfjaTf2XyPr1Lf083vW/Pb2nyOq8ynlvrcK35jfiPK1O9w8dgq9d3PfB4Wvzbfge4jHlOlvpebz1fmN870R1epD/qHxJnmg/4Y8SjGSdxfdQ+YzwzzWwu9+R1Zpb4Xmd+X5jfWfI6ozKeW+jwifmF+G5ap33H0d5X6TlT9teY33Xz7c/0wv8Oq1BefO8XPzQ/9IeKhVeqzm+qmmM9n5tdb+nXNb0qV+u5qfreLn5pvL/M7GN8q9T3GfD4xv41NP7lKfQ6tpT5Xih+b37Ay9dsD3yr1HWc+14kfmW8f85koHsR1k3FQ/Sn/4beedFuaz2DpD+S6Kc6WrnX9X/YQH5PuLfFPri/SjRZP4zonFvXUb2XxFfObK46qUt9TzRe/ynzeFbeqUp9TzGdOLdW3Ex+U/lnz+4j+q1L/U8wvl8/q4gNl7PuymDf+5RZV6o9PT3Ft8f4y9cXnL3Fe+Y2sUt/fa6nfeuJ9Zer7hPm1k9/mVeqL32LyubdM/fCZKY6oUp+F66n+njL1+dz0m1Wpzz+11Ke7eHeZ+j1vfr+Lm1apL37zymeAeFeZ+uL3tthC/bNJlfri00EcJN5Zpr74fCa2lt/GVeqLTyfxjjL1Q/+luFGV+vxWS/V9xdvL1O9x8ynUng2r1Be/VvLpL95Wpr74vSE25LdBlfri01a8tUz90H8grl+lPugWFDcWbylTP/SfiIuoPcOr1BefJcRh4s1l6ovPt+IC8luvSn0XMr+bytTvU/MZVqU+6BcRNxFvLFM/fKaLHdWedavUt2Z+N5Sp34vmM7RKfdC3FDcSry9TP3xeFxdWe4ZUqS8+S4orideVqS8+s8Q/xHWq1PfDWup3bZn6zTIduXmB+IFIXu4kXvMfucnnLafP62qf+5P4i7i2dAeIN0r/vn3+vqq/2j5/F/3/08TzaqnPe+bXk1wVdyhT/6vscxpq/7J2PEPE9cWpqv/Rjm8+jfOC4qAqPe797fgb5rdWler2Mx3Hfa74rh03x7m9eKUd59L6vBXE7/XffxUHVmk79rV2nK3Pecc+f1v7vEmsO2qp7mLTb1Wm+l3EAdLvU6V+E8znKvEtsa/57Gl+E833APO5W3zTfAeZ36HipWXqe4b5vGF+o01/ifnsrrrx4km11Pd1811ZulXEkWX6ORfb5+B3jTjNfNFPEC8yn0mqu9R8XjO/AarfzfwuNN89zO82car5rmp+B4kXmO9Z5vOq+Y0x/fnmg/5q8RXzQb+XeJ757GP6u8SXzW8N85lifrtxnVX98eb3kvmuLd1m5rcr31M5n83vZPFF813T/LbgvOJ7apXqLxNfMD90u4tjq9RnsunvE583vyHmc4S4c5X6HqL6683vOfMdyniZ305V6nu46s8032fNd7j025jvjlXqi8/N4jPmh35/8qpKffZU3bHm87T5rSb9Jua3fZX67mV+94tPme/q5nekuF2V+h6p+kvM70nz3YD5aX7bVqkvPreIT5gf+gPEMVXqc6LpHxUfN7/Nzed48UTz7WL5uYp4heq+tjzNtA5YU3rylVx9W58/Xz31Hy5eXqb+79nntDd//Or11HegeFmZ+r5kvq3kt0aV+nQ0PbovxP5Vqtu7SnV9xH7iuvVU/49Y6vPbiv2q1H+C+f9RS/2fNL++Veqzl/mg7yz9UPP5Spxf7Vm9Sn33NF98lhI3qKc+34kLyW+1KvXdw3wXN79e4jfm97e4apX6jjffP2up71Nl6rdKlfqMMx/0c8XB5vOc2EbH16dKfXc3X3zay6e3eK75fSzOEVeuUn98/za/c8rU7xnz612lfuib0q8pnl2mfvi8JrbU8faqUl98FhXXEs8qU198ZojzyK9nlfri0008k3WL6WeLParUp4XpVxTPKFO/aebzm7hSlfqW9dR3HfH0MvV91XwrHV/3KvXFbwFxNfG0MvXF70OxLr8Vq9S3jfmdWqZ+75hPtyr1yeqpz6riKWXq94L51dSeFarUF7/5xQ3Fk8vUF7/3xQ7y61qlvn/VUr+TytTvafNZvkp90M8j/Rrmg/5Nsal2LFelftv8x37A8v+xH/BzGdf59+2txFH1WO/fu5cUl2rE+iM4bzgP67FufXEbcUwj1l0lXl2P6/cU92rE9Teyr8k+aT3W7StOFg9pxLrnxOfrcf0ZHEcjrn9LfLse118mXt6I6z8i18Uv67HuOvFW8bZGrPuRca/H9Q+KDzXi+l/FP8R/xCyP9Y+KT4rPiy80Yn0rcZ48rn9DfLMR17cV24uLiZ3zWP+B+LE4U/yqEeu7iSvmcf1s8bdGXL+y2EdcQxyQx/q59JPYbP7LFs1Yv644LI/r24oLNOP64eIIcfM81rUXFxM7N2PdaHGbPK5fRly2GdfvIu6ax/U9xV7NuH6iuE8e1/enH5tx/SHilDyuH0o/NuP608TT87h+lLh1M66/QLwwj+t3EnduxvWXi9eK1+Wxbpy4N/3QjHW3ibfncf1B4sHNuP4e8XHxiTzWHSaeKJ4k+n685+EsyzOv434A+bV1PdZxP4D8WroR68Zafp1dj3U9LMe2bcS6iy3PrqnHul0szyY0Yh05dlc9rifHpjTi+gcsz16ox7qjLNfOasS6Vy3f3qnHuvMt365oxDpybUY9rifXbm/E9TMZf8u5n+ux/g7xXsu5hxuxnlyr5XE9ufZiI64vLN9a57HuFcu1txqxjhzrksf15NjXjbh+ccuz7nms+8Zy7PdGrOtt+bVmHuvmiORYy2asG2R5tl4e61pbnrVrxrpNLM9G5rGuo+Val2asI9fG5HE9ubZcM67fwfJttzzWdbOc692MdeMs7yblsa6P5d6AZqw7wPLv0DzWDbIcHNaMdSdYHp6Rx7oRloujm7GOXLwoj+vJw7HNuP5iy8Pr81i3i+XiPs1Yd4Pl4x15rJtk+Ti5Gevutlx9Mo91h1qunixyP3MZkfuZP4jcx+T+pdf7Pu5IcYv/8PN93S7i4o1YP4n9C/ZF6rFuAHktbt2IdZeLV9Tj+nHi+EZcfx05Id5ej3UTxYPEgxux7lHxGfHZeqw7nuMRT2/EumniG+Kb9Vh3kXiJeGkj1n0mfl6P628Sb27E9d+I3zEf6rHubvE+8f5GrPtT/FucU491T9E/4rONWNckL/K4/jVxWiOubyN2FDvlse4d8QvWJY1Yt5y4vNg1j3U/iT+LvzRiXV+xXx7XF7oOlM24fqC4jjgkj3WtxEqcrxnrNhQ3FTfLY10HsZO4aDPWjeK6nsf1S3Gda8b123E9F8fmsa6ruJLYoxnr9hAn8H0pj3Wr0t9iv2asO5DruTg5j3Vr09/ikGasO0U8NY/rtxS3asb1Z4nniefnsW6MuIO4YzPWXSVencf1e4p7NeP6m8Vb8rh+f/GAZlx/l/io+Fge66aIx4sniDx/RB7y3NNUy70f/yNPXcfzUeTflvXYh+ejyL8lGrHucMu/M+qxbrjl4OhGrCMHr6zH9eTfHo24nv1a8o/9V9exX0v+sQ/rOnKPfVivJ+/Yh/V6co59WK8n59h/9Xr2a8m76fVYx34teXdLI9aRcz/U43ry7YFGXO/7teTc3Hqs9/1acu+5Rqwn91rmcT1593ojrvf9WnJv0TzW+34t+TejEevJvRXyuJ7c+7UR1/t+LTnYP4/1vl9LHjaasZ4cHJrH9eTf/M24nv1a8o/9V9exX0sOsg/rOnKQfVivJ//Yh/V6co99WK8n79iH9Xpyjn1Yryff2If1enKNfVivJ9fYh/V6co19WK8nz9iH9XpyjH1YryfH2H/1evZrybNr8ljHfi25NqEZ68i1W/O4njw7sBnXs19LDrJv6zr2a8lB9m11GmT616y9uKA4lfWx+LH4SR7XdxEXz+L6r8Vv8ri+q7hCFtf/Iv6ax/WriatncX29+Jd5EdevKw7L4vq24gJFXL+ZOCKL6xcVFyvi+tHiNllcv4y4bBHX7yLumsX1PcVeRVw/Udwni+v7i2sUcf1k8ZAsrh8iDi3i+uPE47O4flP6rYjrzxLPzuL6MeK2RVx/iXhpFtfvKu5WxPU3i7dkcf3+4gFFXP+I+GgW1x8nHl/E9c+LL2Rx/ZkcdxHXTxNfz+L6i8SLi7j+M/HzLK6/ieMu4vrvxO+zuP4+8f4irv9FrPFcYC3WPSK+KL5UxLr5xba1uP598YMiru/E82diV3GFWqz/UvxG/EX8tYj1o8Sta3H9Uvr+sXQZ148V+Z0Jvy85vxbre4j8zoTfl+xYxnp+p8LvXLye36XwexdyqIU4v0i+LCSSR9PE9y1nPs1jXUeRvFkii3VfWO58m8c6cqdbFteTO7PzuL6nSP70zWLdXyI5VBSxbrBIHq2Xxbo2lkvtili3sUg+ef0ilk9eTy6NyeJ6cmm5Iq7fQSSfdstiXTfLqd5FrNtLJK8mZbFudcutAUWsI7emZHE9ubVuEdcfJpJfJ2Sxbj3LsRFFrDtNJM/OyWLdKMu17YpYR65dlsX15NruRVx/uUi+3ZrFunGWcwcWse5ukbx7LIt1h1runVDEumdE8u/FLNadZjl4dhHryME3srieHLykiOvfFcnD6Vmsu9Jy8ZYi1n0lko8/ZLHuTsvHB4pYRy7mtbieXHy5iOsblo8L1GLdVMvFD4tY197ysFst1n1suTi7iHUbWD6OrsW6hSwXlyljnf+9BnKR35+63v9+AznJ71JdT656HXmq5mbcxmsrLiC2E19RvrwqfiB+KH6Ux7pO4mJi5yzWfSnOFL/KY91y4vJZXP+T+HMe1/cSVxFXzWLd3yIdVCtiXT9xiDg0i3WlOB/rwCLWbSJumsX1HcVORVw/Uhwlbp3Fui6s/8Sli1i3o7izODaLdSuKK4k9ilg3Qdw7i+v7iv2KuP4A8SDx4CzWDRIHi+sUse5I8Rjx2CzWbcD6hX4vYt0Z4plZXD+adUwR158vXiRenMW6HcWx4i5FrLtevFG8KYt1+4j7ivsVse4h8eEsrj9GPLaI658QnxWfy2LdSeLp9FMR614Rp4qvZbHuPPEC8cIi1n0ifprF9TfQL0Vc/4X4rTgri3W3iveI9xaxbrY4V/wni3WPic+Jzxexbl7lQRuxqsW6t8V3xHeLWLcsv2+oxfU/ij8Vcf1QfhcrblmLdfMroBYXlyhjnf++/pxarPPf2W9Xxjr/PT91/K7fHn/5v9xj35O8nGp5x76n15NzXbK4npxj39PryTn2Pb2efGPf0+vJNfY9vZ48Y9/T68kx9j29nhxj39PryTH2Pb2e/GLf0+vJLfY9vZ68Yt/T68kp9j29npxi39PrySn2Pb2efGLf0+vJJfY9vZ48Yt/T68kh9j29nhxi39PrySH2Pb2e/GHf0+vJHfY9vZ68Yd/T68kZ9j29npxh39PryRn2Pb2efGHf0+vJFfY9vZ48Yd/T68kR9j29nhxh39PryRH2Pb2e/GDf0+vJDfY9vZ68YL/T69kfJS+yWqxjf5S8eKGIdeTEfLW4npx4r4jrfX+U3Fi+Fut9f5T8+LmI9eTGVrW4nrxYsozrfX/0NMsP/i6N+/g+6SjLF/5ejfuQR15HHvGPyrJlxTXFgeILup6/KP4ottRxtypSHx6Hn09cyvzXENfPUt+XxPfE7+zzmvqcBckJ6fn6xc9E+dyFs9T3ZfFd+5zP2Q9VfWF+fM9F/4r58P2WfeaWYhuRfWf2l18X37H9ZnStTN9BXCRL9W+Yz2fidHEe1bcWlxZXFPuLb6r+LfF78TexUaQ+85rPIHHtLPV523xay2de1oeqp3/YV+d42V9fVPT++tSOm332GaKPH/sNzAv2G5YUfTzZd2B+sO8wS2Sc6GfGh35eRlxZ7CMybm/aeNHvP4hzxX9En9e0m/Oru9hb9PlNuzmvfhfniD7P6HeOYyXR59kMa/cfoo8f9zm4X4FfD5H7Fz6O3P+Ybf5/2v0M3z+if9jXoX/Y1/F9JPrnJ+sf9ne8H2g34ztAHC56f/xp49pC50H7Im4f48g+EvtHa4nrZHE7GU8uZOwnzUNusj5VGf3OfR+OY3CWtpt+5r4P7ef+D/OQdnOdp70biN9ZO5vWvoVEP2/o1w3FrUQ/T+jPDuKSrKdVT7+xn8a+2OYi+2Kl9Rf7a+yPdRbZH/N+476Xt5v7WluI3o/tbF5wHNzvWlz0eUD/chxbituKPv4L2XEsIS7P9x/p6H/ygn7fTtxD3Ff83sajYePQle+D4pqi9wv37bYXuX/n/cB9uxVE7t/5OoP+2Uikf8aJvr6gfxa2/ukjMp601/uFdu8udrB2e3/Q/pVFn4/stzKe7LfuJPp8XMrGk33X7vy7dIwrOc44niyeLv6/9YCN3xbi1iLrvYEi40D/nyteIF4jst5rZePBOGwv7iROEH2+0y+M73hxP9Hne3cb31XEgXyudMxD7gMzvnuK3Bf2+djbxnc1kfvDPp7sh7OvTbv3F9nf9nFln7yvtX8tkf3u7az9nMccx4HioWJXa/+qdhxri8OYF9INFBnn28TbRf8ewbgeJB5Mu1XPOpP5eY94v/iA6OtN5udh4pHiUaKPH/fl6Qe/z3646OM4wPrD77sPFzkPfH4eJZ4ocp5cKHIe+DzdkOuGnSc7F6m/z6Mj7HOPzlJfnz/r2+dtVKR+ft8Ff+6f+DwcbL7cP/H5R3+fJJ4inir6/KOfR3J9ELdiHpgvzz3gy/MPPm4jzI/nHzwHaTft5Tp6hXiHeKfoeTjM2s91dbw4WTxE9H5mHLnvxP2j80TuH3m/M57cj+J+0g5cpzhv7HOYr/hfKV4t+nzZ3Hz3EPcSfXwZD54nuUzkuZCrRB9nxofnTPw5kT1FxonPY5zwvVa8ThxpnzPe/PYWJ4re79x/o5+4/3aD6P091vqJ+3CTRPqf6wT9/qD4ski/72z9fbR4ruj9yvHz/MxdIs/ReH9y/DxHM0XkeRqfHxw37X1cfEr0+THJ2n0i86ZI28t40d4nxaeztJ0TrZ0ni6eKPj7c7+S+Je3lvqWPD/c/j7H2cv+S+UZ7uS7Q3jfF98SPxfHW/kOs/ZeKV3Ecoo/fYyL9wvNML4k+fidY//Bc0zl8vnRc97jekdf3iveJM8SZ4teiryu57pHjh3P9E28X7+A4RR8f5hX3ibk//Kro48O84n4x94nPF5m3+HK+4feW+L74oXi0+Z9rvpeJVzOvRcaH58UYJ57/elvkOTDG52wbJ54Du5zzUvTzBH/mIf4fiX6+4H+p+V8nen9zf53++UTkPvmXovf7BdY/3D/nvvlt1EnP9wzWn++IH4g/ib+Jf4r+fYN16RXiNeJDzDfxKcZVPlyfaQfzhPlBO34Ufxf/Fn1dR3uYN5dZex4Un2DeiD4/GMfpIs/7fSP6/GAc/bm/u0Wf54zfz+Jf4hzR5zfj9rD4tPisyDyk3VwPae+v4h9ioRsUl1r7r7d2P8r8Z56KPg95/oLj4fkLn3f32HHw/IX3L89F0m5/ztH79wFrrz/v6N+zmOel/FqJ84j+fYt5/ar4Bv0u+nW7hXxaiguLfl2eJr4ufi6SB1z/20m/kNhB5HrP9f0j8VPxM/6/fMhR2kt+NmtpuxcR/9+62vLzNTuO6aLPA+Y1z9XwPM2Cos8H5jXP1/BczSfMI/nQT3zfpX8W5TlRy8UjrX9mFKme78voF6uluqNMN1Pk/i83/vi9C/dj+f0K92W5D8z9XH7/wv1Yfr/CfVnOg8LOA39et4vIecD5ynngz+1+zefKn+sG1wnmRWuxM8/Xir6O4jrBvHiL81v8XuT8I1c4D5cQlxE578gPzr9vxR/4HPlwfSUvuK52lN9SYg+xp0hOcL0lJ7jOfiF+J/4p/iV6XpJTS8q/u9hL9Hwkj2aJv4t/8zny4zzivOG4VhJXE9espe3nfPrEjucPsa774C1FrmOsO7mO9Rb7imuJXM9YX3I9myMW8p2HvzMo38LmFfN3RbG/uI7oOcS8Yh7/Jjb4+9Cir6Pb2fGsLK4qriv6uvkjO665Yk2f05a/T6HPYZ3CvOsjri2uJzLfnrF59o84r3zb8feP5ct6jPm1ijhYHC4yz56y+cWDeG3E9qKv95Yw/37ixqKv7741/1JcRPR13JLWP6uLm4i+Xptl/ZPLt6Poz2tyvvAcJecLz1EOE/35Tc4XnqvkfOG5ygXoN5u//O6BeczvHzYU/fo72+Yvv4PoQP/Z+oTr4wBxkDhC5DrJ+oTrZAv5tRYX4/eBdp0n/9cXN+L5GdGv7+T+gvJbWOwq+vqK9m4jjhF9XUU7l+XvfHMe2DqI83eIuLk4UuS8ZT3EeTuf/DqLXbgO2rqN692m4vair9u4znUSVxBbmJ/3L76biduK08zf+5nPWVRcnvG1nB5o47ijyPiRy61s/FYUfd3J+mgN6/cdRF9/sl5qyo9+78bzydLxfBm/x+V5MX5fy3NjPKfG82b8PpfnxPh9Lc+L+XqOdu8k7lxL2znT2ttdXInrjK0jyF1/7xY5y3qBnPX3bfm6qr+NG+/z9fcE+7qK3GMceb+vvzfY11lcz7me8H4gf6+Pr7u4rnNd4X1B/p4fru+sf7i+8x4pfz8V13fWP1zfeZ+Uv6eKfGU9R67yXjB/3xj5yvqNXOX9YP7eMfKCdRV5wXvk/P1v5ATrKXKC98r5e+BYh7D+YF3Fe9P9feW895x1COsP1le8R93fX8770Mkl1lXkEu9V5n3NvF+ZXGI9RS7xfmXe28x7lv8Hiwj8xHicdZ1ntBVF1oaFe8859/RVm2BExYQIYyAIEgTJQVQkCGYySFIkSM45owRFJZlQFEQFBCSKOSs6jop5zNkZHRVQvrU+nvdHvauYP89yud+3u6ur9q7T3l3TosRh//+/i+AV8CY4Dy6FpTMHWRaeCuvCq+D18Fx01eHF8GY4Gs6BK+AfhQe5Hx6NXwPYHF4B+8JL0beG18J+cDx8EB6L7jhYEdaEreAgeD66prANHAMnwFXwMHRHwnKwBbwYDoY10LWEHeFIOAquhn8zPmXQnwKbwmZwKKyKrhrsC4fA2XAl3Iv/PlgDnwthR3iTxg1dE9gWDoYL4f3wAL5HoD8B1oed4ABYy8ZH4zIFPgRLEF/GxuMyOATWOcR9joDrYcEh7q8JHAsvsHlxo82LBXANzNi8qG3z4jo4DNZD1wz2huPgVPgYzKJLYXV4EWwDR2mcbJ1qfWp+b4Kaz1qXWo+a1xM1PsS3gjfYPHgU6v0fpfds73+kxof4BrA/HA7nww2wJLq81i9sDK+F45TH0DWCXeFQOBNuhIXoiuFZsCG8HE7QddFdDjvBSXAWXAYfgYejLw8rKd/BDrA3HK51atcbYNfbDIvMv475T9K8J74b7AEHwunwHrgW5tCfrbqg9QLbwf5whMYRfXfYBw6CD8B1MEF3DjxP6wYOhGM0b9F1sOfS80yEW2ApdCfb8+g5LoFT9M/oOsMucBicDJfAJ+Ex6CvDf8BGsDXsBSdrHljdGGXP8Th8okT4HKobzew5RsPxsL09j57jbrgVnmT3r/vuB6fqvZcIfX29yXcbPDET+vt6k/805Xsbd82jQTb+2+HxNt6aR/Vs3KcrP9s61vrdAc+09ap1OgNq/fS09bMTap1UsXUyE/6PuKol+fewPdxJ3F54YvYgT4L70Jcmvj5sDTvAgfBZfPbAHD7HwZPhBXA//kejPw82gJ1gZ/gcvh/Dv5S/8asEK8O/8D8KfR14HbwePo/PR7AA/ZmwGvwDv/LoWsHe8Aa4C5+vVbfQV4e14O/41UVXD3aB3eFT+BSiy8J/wHNgIfFpyfC5a8Ae9tx94Wv4v2fj8LfysY1DDbiX+z8Vn+qwKbwW3gyfwe87uB8eiV9F2ACWQFcOXgbbwsthNzgSvozv5/B4/E6A5eHZsCksif4E2BC2hDfB4fAV/L+ACT5lYF3YGP7JeNVEfwFsAYfCUfBpfA/ADD6lYUPYDCboyth8agO72rwaBN/G/wOo+VUOnmXzrB48oDyEz4XwRjgYvojvH7AIfW1YH/6Nn/KAzyPlgxHwBcsDPo+UD5rAI9GVhbVgbdgH9oPv4vshLKF5As+DNeFh5ut5Ur7j4Evm63lSvhfBInTnwGawJxwNd+P7O0zRV4HNYYHlxSaWHyfBVy0vHmH58VKYJ76KrddrbJ32gm/h+6et0zNsfVaFGXtf/vx6f+Ph6/jqffk46P210vijOxEqLze2vDwMzoCfcZ0vLU8fbnm6EWwPc1bvGlm9GwAnwzet3hVbvasDW8Nj0Z0GLzpE/pwNb4Ofcp3vYdlD5M+OsAs8Hr3qo/KC6qPywjT4b6uTyg+qk8oPbTWe6LSfUV3Tvkb1bTp8x/Y3qmfa56iutdN4otM+R/uaMXAs/Kftb7SfaQFbah9F/Nm2bhvZ+9W6nQm/0v7N1nGxvWet48u1Li0Pa94qD2vezoL/snys+Vrf5msHWMrq4sWwv9XHOfB9q4tHw/OtPl4BK6DTPuJS2z9MgVPhj7aPONb2D5fBNvAUdOfb/Xe05xgCv8X3MLv/U+w5LoTH2Drzuqt1thh+YuvL663WVzfVBdsvaHyG2rjcAb/BX/sFjU9DG5fu2t9ZHdD+Vvta1YPb4Z1wH9dRXdB+V/tc1YeusIfWDXrtr7Sv0v7nLqh9j/ZV2k9p39NT64H4S+CV8Co4AU6EpfTe4GnwdHgxvER5Ap1+PynPzIXzVD+0/i2/XAmv0rqyPKP8ov3BCvgA9N9PyjPaH/SFA5UX0GlfrPy+BK5SviZe+2Dl815wMPTfY9qHqT49BFdD/z2mfZjq0xA4VPPc9ge670V230vhcuVX2yfoOTrbc1wP+0D/faLnmWLPsxH67xM9z2X2PBOg/87U7y1fR2ug/97U7yxfP8P0ntD5fl77krVwA/Tfi9rHaz8yAo7T9cx3sfluh2eZXzfzm651b+Pg60fj8ATcBc+18fD1pPEYD2dDz+eqS7fAZfBu+KDqg+V11aerYW/YDw7SvELv+3ztR7Wet8Fnof+O0HrWvlTrehqcp7yHfrRdR/uILXY93//LX/uHKXYd/66hfZvy/tPwGdVty/vatynfz4Fzof9OlP8s838N+u9F+Xcw/8XQ988al9U2Pq9A3z9rXIba+NwG/XuA5pfqlubXI3AT9O8Cml+qY5pfw+FE5RWrX/PhAngvvA8+DL2OXav8BG/Q+4A3a11ZPtF72WDv5Q3ov2/0XsbZe7lT42r1/g4bP43be9C/d3S3cdN43at5ZnVZeWUr9Hqs/DEV+r5fdfhV6Pt91d3bNV+I833ZRnuu9+En0Petes4J9nz3wYeU96zOK1+rzitfPwU/gB9C/z2nPK76rzw+C66ED+i5LT8onyuPK098Cn0/qDyu/K088TD0ur8Sroeb4ZOqu1bvb4Jj4SQ4GWq9qg48aut2B9wJtU6V/0faep0BZ8Ildv+r7L71Xl6Gvez+B9t96z0sgr5fVH3RfC0oOMgs9P2i6orm76vwDc0zy5+ax8qfmr/H4n8a9H2e5rHyqObvp/B76O/zJRuf1+Gb0N/nQhufO+Bd0N/nc3A3fAvuUR6093mL3qvmJ7wfet7fab6+/r9VPbF5NNP8ff2vh57ftO603krxPo6Cnu+07rTe3ocfQd9PKp8o/yuPlMT/DFgR+v5S+UT1QHnkFfgT/Bn6+tB7Vx77GH6vemXvX+9deWuVxg36fHrXfL+CXyufm+895vsYfBz6fkzrU+tH61LrpwL0fZnWqdaP1qfWz49Q8/htm8efwW/gd1DzeJnN49VwHdwAff/n+wHNO823021e+H7Q9weah5p/P9i88PWp59E6+h/8Hfr61PNo/ezUPNN10X0Ov4A/w1/gb6obWvdaL/BJvX/lHfixzSfN2x/gr/AP1QubT5q3G+F2uAv6+/3RxmUv3Af9/W6ycXkGPgt9//C93bfyQAp9v/CE3bfW/Xt63/j818ahBH6FMAM1DttsHF6Gr2mdK79Z3frW5ktZq2NVoO+7NH80bz60OvYn9PHeD3P4HgGPhD7ez8E34b/gu7oOfn/DAzCPXwLLwKfRvQBf1LqCb+s9Q19Peg7dt8brOHg89HX1rN2/xusz+G/o8z9j86k0PAb6/Nd71nzaAz+BPn8ON79y8BR4KvR59I75fg6/hd9Bf78apxPgmbAS9Per8fkC/gL/A308dP9VYTV4PvTx0H3vhfvgYbmDOBrdSbA8PAueDWvAj9F/Bb+Gv2k+wb+z4f1qnM+1+z+vILxPjesfdt9/Qc8/Gp+KNh7VYVPoeUjj9LONy354JOPj817vsxasA32e6z2WwKcAljW/KuZXG14CPzTfP823JDwmF96f5ltlu8+6sCFsVBDer+bdf7PhfRfCBBZDf4+ahw1gY9gE+vvUPMzDw+ERsCa6erA+bAFbwovhAXyz6HOwNCyjeQ99/eg+NW8ug22grx/dp+bL8bAc9HFuBi+FrZXHbVxTeKzmIfR5J99LzPdKeBX0eVhs80bXOQ2ernj7fan96wQ4EfrvSu1XL8bnEujzoZWNc1t4hfK3jfNRNs4nwFOh/x7S/nQanA79d5D2oW3xaQf9PbWzcb0adoZdoL+3E21cK8DK8B/Q55vGoSvsDnsoj9h80zicBc+B50KNb0fz72TX6aY6hu4U869k1zlb8wid9leaL8pzym+aN5PhIujfC360vFfS5lNr2Bl63m9j43YznARnQM/75Wz8Gmg+wPZ6n+j9d3F1u47m323Qf/f8bPVH19F87AK9Pmid94XDbFxnQa8TWuc1YCMbzw650F/zvbNdr7/et83vyuZ/fi7Ua530NJ8b4I2qX7Y+qphfLY0L9PmrddIH9oMDoM9frZPzVH9gHejrTz6aV0PheDgV+jqUn+ZVQ9gKtsnF73eIXWd4Qfw+LzTfxtDH9yY4Ao6EPq51YRPYFPo8kO8w85sCZ0OfF7pOI/O/DHbMxZ97nI33TDinIP78F9k4Xw6vgD4Oo+z+58IFcKHqmd13M7v/K+F1sFMuvO+pdt+3w2VwheqlzQ/dd1fYW+8F+njMN/8lcCn08bjW/HvB6+HNdv8z7L6fg8/DBnb/7e2+b4G3Qp83Gvfl8B7o80Tj3Af2h5qXs8xXflvgVqj52MH85TsFTs2F96d5sdju8154X0F4n5oP3ex+b4A3wtvtfWlerIIPwYdVz+19aV4MhkP0HuHd6FbCB+Ba+Ch8QvkU3U1woNYRHKl5Dn0+6z7XwWdt3vh81n2OgfNs3vj4roZr4Hq4UfXGxneo5gkcCydAn3f32nU0b7ap7hzifeo6mjfToL+/x218NsBNqgc2LqNtfMbBiXoOdNp/ad+1GT4Jfd+u/dUkOFm09bTIfLSefF/R2Xy0jlbb+9E4blfds/ehcZsO/f1KtwP6+5RuBvTxfRo+o3pj4zkHzoXrTC+d5vUY00uneez7Uu0XlT9fgL4P1f5QeXO+xof46eYnnxeh/+7pYj4L9O+tX099SdvhDv09bv4gm8DL4Qz4bHqQ3v+3zfzON59n0lCvPjz5qA9vq/ll8qHfZfDpNPRVH9z4Q/gdg66V+cxBvysNfb2frrnpZ6eh/inz8X5u+aXoG+ZD31lp6LvTfNUXPcR8j0R/ofnOTEPfHear/uqe5ns8+irmOyMNfbeb7zXmd4b5TE9Dn23mo/5b+agPt3w+9LsYTktD363m29B81GeYmE9bODUNfbeYr/cr1jT9lDT0edJ8vJ9S+jZwchr6bDYf9WVONp9i9K3Nb1Ia+m4yX+9HrWo+E9PQZ6P5eF+r+iyPy4d+7eCENPR9wny971d+WfQXmN/4NPTdYL7ePyx9CzguDX3Wm4/6kVuaz19FB1nG/Mamoe86861ufurj329+zeCYNPR93Hz9PIByph+dhj6PmY+fK3CD/v49H/rVgqOUF+Gj5lvTfHQOx4Gi0KceHJmGvmvNV+d5XGl+R6E/zfxGpKHvI+ar/lrvQ5mufAlXqF7BW9DfCp+Dr5mf+lmmKd/Bxeb7ApyXhv7e9zlVec587oVz09BnC7rnzUf9o1OU5+Ct5veg+T6Zift6/9lk5T/zvR2+CjdnQl/5eL/CJOVD83kW/gtuyoS+u8xPfQ8TlQ9Vt83vI7gxE/p63/AE5UXzeRw+kQl9vJ9qvPIgXGP6DZnQ50XzUT/WOOU/uMD8dsH1mdBXft5nNFb50PzuhrvhukzoKx/126lfaYzyofmshu/ouTOhr/ftjVYeNP2j8LFM6POU6dX3N0r5UPss83lN/5wJfeWnflz14Y5UPjS/ZfANuDYT+npf7wjlQdOvhI9kQh/p1Kek/qThyn+mfwh+rvmRCX3l432Fw/Khr3yegB/qfWRCX+9THJoP/R42n4czoY/06hNXf+PN+dBPPo/AL3SfmdDX+86H5EO/ReazKhP6SK++WPXDDs6HfvJZCv+tfJoJfeXzA1Sf7aB86CufjfBp+EAm9JXPwHzoI53qZg+4Eqpungtvsvqpuqnr/Qf+atfbCrdrvqBbA28m/n67fgPiB9j1q/Hvr4bdMqHPfea3j31FBfRn5+P+D3M/b6D7xZ7H+87uRLfFnu99+InmdRo+92p7fl3vxnzoOzQN9dLpubvCe+259ZxnwRvs+X4i7je77ma4Q/M/De/jIdjZrluZ+P52vSHE6/w46XSO3On5UF8N9jO/wWnoV9d8blQeN5/asK/5DkpD38bmo3Ojlqtemd9FsI/5y9fPn1pmfhXNp7f56Tw2nWul89jku9R8/2Z+H4b+lHx4nevtOn6+2xLzlb4u7GU+Oieuj/ncZX5FxJ93CL97GK9a5qdzwe403xLm11T7hjT08/PF7jC/SqZfkYY+fj7dYvORvg5cnoY+9U0/1nxypm+p949+WRr66jy69uZ3BLqTzKd3GvotNd8G5qfzFvPmd6reexr6LjFfP69Ruhp632noc5f5NDe9zpkrZT6XwJ76LgHvNF+dVzfY/Eqjr29+PdLQ9w7z9XP75Hs0+jPNt3sa+i42Xz//T/pGsFsa+txuPjpPsK35lER/gvl1TUPf28y3jvnpXLgC87sUdklD30Xmq/Plepvfseirm1/nNPRdaL5+/p30jWEn1SW4wHw6mF7ndM2CJ5tfe9jB/OV7DzqdM6A6qvMG1lsdfcnq6Sqrp3dnQt/3zV/nF9yXD/0/1v7RfFdkQt9XzFfnOtyWD33f1v4xDX1XmI/OTZJ+LRxI/ErtC9Mw3s9D0rkA0r8IX4cfaN+n73TwfruOn7c0x/wGpKHPfeYjvZ+7IJ91cA+8MQ197zVf+eicC53f0NP8NsFPtW9KQ3/5fmd+Ojejh/Ih3GC+z2kflYb+fp5Xd+VBONf8+qWhj/Q6x0nnN3VT/jOf+fBd7ZfS0Pd28/Nz4roqL5rfKvi8+d6WCX39/LkuyovwFvNbpPltej/Hp7PyofncBd+CCzOhr3x0XozOh+mkfGg+j8F/wgWZ0NfPnblOecv0OzV+mdBnt+l1bs21+dBvifk8BW/NhL6vm6/Ob7omH/reYb7vaRwzoa/8dJ6XzoW6Oh/6yu8B+Aqclwl9/Xywq/Kh3z3mMzcT+rxkPjoH7Mp86LfQ/F6GczKhr/x0/qLOE7siH/rK7374GZytvAf9PMeO+dBvnvnMNp2fk9TRdMvhm5ofrLv5h/ge8F/o3wO25eNx/ntb57pUyMb1/rv7B/hjPq5XP7366Dtl47pjkoM8E1ZK4jr13w/IxuNrwzpJPF59+6P1XTQb1zWAzWGLJK6bDxdk4/HX6jmSePwKeHc2Ht8X9kvi8eqnUx/do9m4bhAcAUcmcZ3677Zm4/FT4NQkHq++PfVNqV/qpWxcPwPOgQvgwiSuV7/VP7Px+GVweRKPV5+W+m7Ub/NNNq5fCVfBx+G6JK5Xv87v2Xj8TvhUEo9Xn4/6LtRvUZSL61/QOME34e4krle/RtlcPP4D+GESj1efR3l4ci6u+1jjA79J4rqK8MxcPP5n+EsSj68Gq+fi8fvg/iQeXw/Wz8Xjs8UHmSuOx7eALXPx+NKwTHE8/mp4TS4eXwGeURyP7wF75uLx58IqxfF4/b2h/s5wUC6uqwkv0DgUx3X6+8RRuXh8U9isOB6vv2ucBWfn4rpWsAPsCFUPfzhEPdxo9czj9P1f9UvnbLruaatfP+XjOp23pfql87ZctxeqjlVO4jqd16F6pvM6XFfN6lndJK5THdN5Hx6vOtYyicfrHAnVM50n4brWVtc6JXGdzgtQfdN5Aa7rbvWtfxLXqa7pnAGPV10blcTj1UeuvmnVOfVPu340nGB1bloS16uuqf/a41XXFiXxePXZqr6pz9Z1i62urUjiOtUx9eV6vOrY+iQer35T1TP1nbpug9WxXUlcp75G1S/1NbrueatjbyVxnfrfVM/U/+a6d6yefZTEdernUj1TX5frvrC69m0S16muqR/M41XX/pPE49V3o/qmvhvX/c/q3F9JXKc+GNU79cG47oD2G+ThouK4Tn0jqn/qH3Hd4VYHyxbHdeqvUD1Uf4XryltdrFgc16kuqi/D41UPqxbH49UXoHqovgDXVbO6WL84rtPfo6s+6u/RXXeh1cfmxXGd/t5adVV/b+26i6yuXgH13zN/hv7fM5+E+u+YHu/fb3VO7KnZuI9/1/0WfpeP63Ueoc4hvCYb1xUxXyvAM5K4TucX9s/G42vC85N4vJ97NSob19WDTWGzJK7T+Uo6V+nWbFzXXs8Dr0niOj/PZnk2rusFe8M+SVync3DWZOPxQ+GwJB7v56pszsZ14+BEOCmJ63Q+iM4FeT4b183V+MBbk7hO54rszsbj74JLkni8zqnQ+RRfZuO6e+Ba7UuSuM7PF/g1G9dthdvg9iSu07kEmVw8/jX4ehKPV9+9+u1L5eK6t+F78P0krvN+75Nycd1n8Ev4VRLXqU/8jFw8/kf4UxKP977Zqrm47lf4J9ybxHXqC1U/6AW5uK4E+bcQZorjOvVNql+yeS6uOwKmsFRxXKc+y6ty8fjT4OnF8Xjvw+uei+sqwbPhOcVxnfrKBuTi8bVhneJ4vPrQhufi8Y1g4+J4vPqd1N80MxfXtYTt4eXwDauHv1gdvdPq3xarp67T30ep/ul8btd/YvXv+3xcp3NQVf90DqrrjrY6WDGJ61QHdX6qx6v+1Uri8fpeq/qn76+u0/da1T99h3Wd6p6+w3q86p2+w3q86py+w3q86py+v3q8vteq3ukcNNfpe63q3fAkrlOd0/lpHq/6NjmJx/v3WtU5nXflev9eq7o3P4nrVfd0XpbHq94tTeLx/r1WdU/nJbnev9eq/j2WxPWqezpvyeNV93Yk8Xj/Xqs6qPNyXO/fa1UP30jietVBnbfj8ap/e5J4vL7Xqv7p+6vr9L1WdVDfYV2nOqjvsB6v+qfvsB6vuqfvsB6veqfvsB6vOqfvsB6v+qbvsB6vuqbvsB6vuqbvsB6vuqbvsB6veqbvsB6vOqbvsB6vOqbvrx6v77WqZ+oTd11Nq2t1i+M61TX1l3u86lmT4ni8vteqDuq7retaWR3Ud9s36Jd9E34MP4F34ncXXAUfysXjv4XfFcTj18MNuXj8r/C3gnj8drgjF48vyf8fb0FhPP4V+GouHl8Gli2Mx38AP8zF40+C5Qvj8V/Br3Px+IrwzMJ4/M/wl1w8vhqsXhiP3wf35+Lx9WD9wnh8lr+/zRXF45vDFoXx+FKwdFE8vh1sXxiPPxGeVBSP7wQ7F8bjK8HKRfH43rBPYTy+OjyvKB4/DA4vjMc3go2L4vHT4YzCeHw72L4oHr8ALiyMx1+n5y6Kxy+BSwvj8b3g9UXx+NVwTWE8fqieuygevwluLozHT4STiuLx2+HLWr+Fcd10uAjeVhTX7dE6LozH3w9XFsXjv4TfwV/hb4Vx/aNwA9wOdxTF9RX4HXJGJh7/I/ypKB5fFarPRP0l3TNx/V6oPhP1l5yTj+vVp6I+F49XX4r6XVSHdsM9Vl8+hapH/wfduAnGeJx1nGWUVtXbh4E5w3OYYRilu0QkpbtD6S4bMVAUFAUxEVAsDCzEwERFwQIVFYsWpbsbBGnp5l3r5fp9eH7/rV+u5WLf99nn7n3OeWZcIsv///cJnAgnwS0pF7kV7oR74b6UsNzX8Hs4NRGWOwaPp4TX/w6nJ8Lrz8CU6CKjKCw3By6EixJhuVwwD8wbheXWwI1wUyIsVxgWj8Lrd8DdifD6K2C5KLz+X3g4EV5fCVaHNaKw3HF4Fp5LhOXqwUawcRSWS4kvMgHjOCzXCraOwusvhbnj8Pq2sBvsHoXl8sJisHgclrsO9oY3R2G5MrA8rBCH5frBu6Lw+hqwZhxefzd8CD4cheVqweawRRyWGwafg6OisFwb2Qd2j8NyL8PX4ZgoLHcdvEl2isNy78L3ovD6O+CdcXj9ePgl/CoKyw2AD8pOcVjuW/gTnBaF5YbCJ+HIOCy3QPUkCq9/A46Nw+uXwA2qJ1FY7m34KZwQh+U2w2PweBSW+xz+DqfHYbkCqRd5OSybGpbbCg/CQ3FYri28Bt4Kb0sNy+fNcZGlYWV4ZY6w/Kep4XUD4SL6y2K4AW6Em+Cb1L234KdwAvwsEZb7G+6G/6SE5b6BU+C3ibDcYXgkJbz+F/hrIrz+LMyCP7NGYbm58C84PxGWS4WXqC5HYbnFcB1cnwjLFYFFo/D6nfDvRHh9SVgGXh6F5fbAA/BgIixXGVaBVaOw3Al4Cp5OhOXqwwZReH1EnKfG4fXNYUt4VRSWywlzwcw4LNcBdoZdorBcAVgYFonDcjfAG6Pw+rLwiji8/lbYV3U9CstVhlVhtTgsNwg+AIdEYblGsAlsGoflnobPROH1nWGXOLz+BfgKfDUKy/WE18tOcVjuTfg2fCcKy90Cb4O3x2G5iXBSFF4/WHaJw+u/hlPhD1FY7mE4HI6Iw3LT4Tz4ZxSWGwVfha/FYbnVcA1cG4XlPoQfwfFxWO5feDgKr/8Z/hKH119KfyoFS6eG5dbDvXBfHJa7FvaGN6eG5S6j/5WHFXKE5canhtcNgOqbS6zvbYbql29bv/s8EV6vPrcnJbxefe67RHi9+tzRlPB69bffEuH16mvZovB69bMFifB69bHcUXi9+tiGRHi9+lixKLxe/WtXIrxefatsFF6vfnUoEV6vPlUtCq9XnzqTCK9Xn2oYhderP2WPw+vVl66OwuvVjy6Jw+vVh7pG4fXqQ0Xj8Hr1oZui8Hr1n3JxeL36zp1ReL36TfU4vF595sEovF59plkcXq8+82wUXq/+0jUOr1dfeS0Kr1c/uTEOr1cfGReF16uP9I3D69VHvojC69U/hsTh9eobP0bh9eoXT8Th9b9Zv/grCss9a/3i9Tgspz6xLgqvV5/4OA6v/xvutb5xJArLfwO/t/7xaxyWV9+4LDW8Xv1ifxxeXxVWg9dZ/+iTGtZzGp6BZay/VMwR1qN+5OvUj/6ijs+H/8Ic3G8afJ16NAb+DJfDFar3yC+A6+AB059Ab/4oWe8b8GP4o11vqZ7Dqk+gbyFca9fdnpKsdywcb9f5Us9DWb/I9OmcK/k3TY/Ot8tYtxyugevhONa9Cz+Cet4suRUmvw3uSEmWf8/0fAG/gitZvwoehCdgduz/Pus/gD/BGXBJIlnPatOTEz0ZUbKeD03PKrg6kXx/ss9Wu189X9+Vknyfstcku289Z58M3X8bLS70vGE/dH/quYPiQ88dflDcI7fS/CM7H4Ln4QUov71v/pLdp8F58E89D7D9a9/Kr5PwHPT41r6VVzPhH9DjbJfdxynocTbZ9j1Lzx9Mj95zHDd9p+39hftR7z+mm/7ZUO8z/PmR7HPY7KPnOv4cSfb5xeyj5ztuh9Pm35j4zwfdHrPNr8vg5kR4f/KjniPp+VG65rUovE/5U8+V9DxppfJC86nZXe99dB96/+N2XmT71/ufA7bvhO23gOYH2+dS299W6HkjuxaEl+m8a3kie26D+zVPm930PE3PxUpAPRdbbPbS8zU9H/sH6vmY2y2vxYP2rfdapaDbcdN/3Ifed+2FHgcF7D5Kw/LQ/b/V7mMfPAIPmv2zm90rwDqwCfzJ/LHE/HAUZmWeyaHnZWYXvberCPX+zu2g93bHoN7f+Zwh+xQy+9SCPl/IPtvNPhdgQduv20X7rgm32b7dHtr/eejxWMb8qeetV0KPxwPmTz13Pan/N7/mND/2gtfD/5kHoPxXCl6u5zfoTzM/yP594G1wINS8t8L8IT9URP+VsL7mbbPPlebf2jrnQY/3k+bfLOhNgx6HNcy/daHeC3s8njP/ZkOv3g+7P/U8vL7tuxnU8233q56TR7b/dKjn3RVs/3XsPlrANvCo7V/5q/vIgHmU13aOkJ8fgY9CP0fIry313EL7tjlT8TkcPglHQp83FZ9tYQfYMU6+b/mvsdnB37O3i5LvX36MzR7+3j0fVB54fHaEPSxPbofb/yNOC8ISildYJU7W73HU3q7bKUrW6/GT365XSM9NLC5bmn69P/E4zGV69f7E40/27gmvgdcqLiz+ZOeSqg96nqs4ML3dTa++f3C/FTd9+v7B+2Ab26/qaH/4GBwKvR/msf2rrtaGV8NW0O0sP+q9k94f3QL1/sjtLn/qfZTeJ1VSnVLe2HV6mP4B8F7o8VLC9NaB9aD7V/7Q9yT+Xcg96uvmZ/lH35n4dyJ1YU+7Xn/Tex+8X33ZrlPb9DWADaHbva/ZSe/fBqvPmL2rmp30Hq4xlP1vN7s/BcdC2b2K2bsT7APdrrp/fT/zONR3NG5P3b++o2kN9T2Nx8dg2+/z8CX1J9tvY9t3D8VNnLzf+22/L8LRUfI+G9o+e8FroftH7zuftv3qvaX7R+8/O9t+9f6yv+13qO33ffgx/Fx9w/bfyvbfD96j+4Duv1FmF33P9Ib6n/mvu9lH3zXdrOtb3VO9U78eAZ+Ak+EU+B30uVJ1T328neoffBQ+pvuE7h/Fld4T6/3wW6pn5h/Fld4X6z3xrfAp0zvW9H0AP4ETVD9Nfx/Texe8V3EN5Z8x5id9//Uh1Hdg8k9v85O+A7tbeQk9T6T/fdP/GfR8kf5+pv9+6PZ+2+yj9+V6T/6N+ovZ5zazj96f6735I1qHvM4Zmj8/gp/CX+AMOBv6eUNzaX84ED6teIMvya9Wn7UPxckHto+f4Uw4F/pcp/0obu6y/TwFX1DcQI8P+dG/9/tefdbiQ3707/6GQY9z+e9XOAf+oT5g8S2/PQNHw1fg+7bvz22/v8NZcBHsZ/sfZPt+TvGvOIUeh1PtfvT9hcfdcLsPfX/h9p1m+/bvHN2+I22//r2jn7MU54vhCrgS+nlLcf0WfE92h163l8HlcDv0ujwOvgu/hOoHqv+b4Fa4Dareq75/BifBL/Tv1ke1X/XPpbbvHfB/5mrrn+/YfXwFPQ4U1/quRt/TbIEeD4prfV+j72omKo6sbz5p9tkFvS92MPtMjpPlR5r87ihZrqPJTYF6/6v3t/Oh3seuh3ovq/fAep87Bup97CdQ72WVB8pb5YF/r7sHKg+Ur8oD/273O13X6obqhOJiFfwHHoQ+R6lOKC4+UH7Dn6DyT31FebgPHoLKO/UP5d9UOE3XsfqqfqG6uhMegKfhGag+oXqrPqE6+zX8Ec6Gc6D3S/Wp/fAkPKt+Z/1R/egHOBPO1XUsj7bYfZ2C2XjPnSM1ef/Kp4l2P7PgArhc8Y0+zZ2qY+dghP50qHqm+VL17A+4CK7UdS2eFVeK3xMwO/ozofchxZXieAZcAtcqT+1+Ntn9nIdZuU5u6HPzZ3Zf8+B8uAEq/uZa3F2AGejPCxVvmkcUZ3/C1XATVJzNtvjKgr5cMB9UnGn+Unz9BdfAzbKj6d9n+lNhYejz3VTTvxju0PXNPvvNPinoLQJ9XvvB7LMQ7pS90KPvLpUv+o5S+aLvKPNA/35T+aLvKpUv+q5yo+xm8Xvc4li/fygIvf7q9w+KX/0OYpvsZ/OJ6mOMvpywOFSd1HyiOrkMroK7odd59f/86Cuk72eg13f1/S1wOzwKfb7Sfq+A5aDPVdrnv/Cw8sDmIOXvJegpAUtC5a3mIeXtOvgP3KM6aHOb6l1RWBH63KY69zc8JrubPrev9BbTd7NwnOl3O+s6u+AR2c36dJr5sTKU/9SXV5j/Tigezd6ajxLokd0rQZ8/NS8tNbsfh/pOTd+XHYX6XqyMfTem79T0vdlvUN+JHYD6XsznOe37SlglNXmfU2y/J+Ep1RmbI9R3a8LaUH1W84L67HmYhe/PfK5S35PfqsMasDX0uWqJ+fEsPAdzcz2fs1TPVU/qwnqwC/S5S3VddSUb+lNgEaj6rvlH9b0JbAG7QdV3zT+q7znQlwGLQfVXzXPqq3VgY9gPqr9qflNfzYq+GNaA6heaq9Qv6sPm8B6oPqF5Sn0iQl9OWBdqDtH8obmqE+wOr4e3Q80hmj80XxVCb3F4OawC1Zc0V6kv1YJt4ACovqR5Sn3pAsyD3jrQ+2ops5d+b3AH9H661+yl3x1Ugz5P57N4uhr2gndBn6s3W1xdAkvBmtD7d1mzl36PeD/0/n3I7KXfIzaEPrdprmoF28FB0Oc2zVWXoi8fbATVHzXXqi+2hFfBIVD9UfOs+mIu9GXCptDPU6qDyruecCD085PqofKuJKwPfW7WXNgI3gTvhT43ay5MoK8crAd97pddlH+Doc/5sofyrbHq33/sU3Xucehzq/an+tYa+rxd1+LiRvgg9Hk7m8XFFbAZ9HOW+o3qQGf4KPTz1VmrA4XhVdDPI8pPxfcT0M8hykfFdXvZh/Ve5xUHj0A/N2U1/7eEfm5W/1ZdvwEOg35eVh9XXS8L20A/L2t+bGr1fQT087LmyDSr6+10XeQ0/2ue7gB7wDvhQ9DPAZqvC6C3BKwOm6s/2vXq2fWehMtMv+YC6e8ANY9pftRc1gB2hf3hw1DzmeZIzWmp6C0Ka8MWUHOV5mDNVQ3hfXAo1DyleVjzVHb0NYCt1EeQK2H3pftpD5+Cfg45bveRH3bS/yOnc4LOZc1gR9gXjoQ6N+icoPNZOnoLwqqwo+LA+sZVdh+PweGpyfehvpFp93E1bKs5zu5H93E3fBr6OUf7rgU7y++pyXo936T3GejnKM836e+iem92Vxw1NPs/C/08fMLiR3bvqvpseaz8fQ76eVh52k1/r4B1Otcof0ZBP88oT7rD6aw7DYtmv8hicBTrZsO/4S44B7n1MIFcQVgCNoCjkfsELoXbdD5SH0y7yLno3QzPqX6jrxwsD19G/nP4B1wOD8Mj+nf0bYIp6LkCVoOvsP4zuBD+C8/AmejZrb6FfHVYB77A+ilwEzyrOYX7n4GeCLnssAKsDJ9HbhFcAo/qHKB/R99au+/zqsd23zXhm8iPNzvM05xudjivuEHvXngW5kJvWdgEvoTc93AuXAMPwRzYZz76dsBC6CkCi8NKsCUcg56v4Ha4E+6GxzXXcL0FXGcnTENfblgfNodvIP81XAE3aF5Ab044C70XYCp6LoVN4VXwRfT8CRfD9ep/6M2EK9C7ASqeCsOKFlcN4Xvo+9Tiawc8ZnGWnev9qToEY/TVhY3ga8ofuEzzGnoScJ7VAY8j1YMW8FWrAx5HqgcZ6F+D3o0wK3qywRqwFvwI+QlwPlwAz8EL8C/T63VSetvA102v10npzcP+l6H/BMxETxV4NRyH3Ay4Fp7SXIO+hVYXM6w+doBjrS6utvpYAH3L0XfK8vVyy9Oq8F3kZ1meHrT8PK34R6/85fcv/7WFb5m/3A7yX172v01zhNXlnFaXm8Fu8Av0fGN1epXV6XSuUwwutX6Xbv2uHuwI37F+t9L6XQp6C8Kt6N8H8/xH/ewJb4aT0DcVbvyP+lmS61SA260/qi6oP6oudIFfWp9UfVCfVH0oAlfZPKO+prlG/a0r/MDmG/UzzTnqa0XRv9LmHM01rWBr+L7NN5pnLoW54S70Hbe8TTf/Km+7w8ma3yyPV5qflcfF4Wqrw4rbRha3PeCHVo8Vr6rHitcScJ31xXywtvXHXvBj64ubYRb0qT+Wggdsjihg80Mn2Bn+aHPEVpsfCsHCcA96s9j+S9p9NIbfqa7b/vfYfcRwi+WZ913l2S1wouWX91vlVyX4D/o1L8g+Tc0ut8JvbV6QfdLMLpXhGfSrD2i+1VyrftAH3gbnWF/QvKs5V/2hIrwSav7RfKW5SvPP7VBzj+YqzVOae6ooH1ifH5aGl8F2sD1ch74tcB/cD/OhNz/085PqzDXwWujnKNWX0vAy5ZXVGdUXzQd3wfugn59UZzQf1IQNVBeQ01ys+t4XDoKq55qDVc+rwkbQz2Oaw9SfBsMh0M9jmsPUnxrDpopzmw+079627ztgP+hzgu6jvN1HNVgD+vlE99PJ7mcE9POJ7qeQ3U876OdMnbc8jx6Eft7UOcvzp5n8hJzP85pLHobDoJ8XNcdrHmkB2+h6pvcW0/ssPGb6Kpm+rsp7s4Pnj+wwHL4AT5o9PJ9kj7awJ/R6rr50HbwT3g3vh17X1Z/KwOqwFmyouELe53zNo8rnZ+Bo6OcI5bPmUuV1F3it6p7ND7qO5oin7Ho+/0u/5odOdh1/rqG5TXX/RfgS9OcbmttU73vBa6CfE6W/h+l/E/p5UfpLmP5boM/PsssQs88b0Odn2aWp2edm6M8DFF/qW4qvh+AT0J8LKL7UxxRfzWF71RXrXzfAG+EAeA98AHofK6v6BOvIH7CJ8srqifwyzPzyNvTzjfzSxvxym+xq/f5Ws5/sNh76847KZjfZa4DizPqy6srT0Pux6kdn6HO/+vBY6PO++m4fxQvrfC4bYff1MZwIfW7Vfbaz+7sHDlbdsz6veq0+r3r9PPwUToB+nlMdV/9XHe8BB8L7dN9WH1TPVcdVJyZBnwdVx1W/VScegN73B8LH4ZNwpPqu9fv6sDXsADtC5av6wCOWt8/BUVB5qvrf0vK1G+wO+9r+B9m+5ZcxsKrtv5HtW37oDX1eVH9RvC6ES9SHLW7VVxS/Y+HbijOrn4pj1U/F71a4T/3X6qjiWHVU8TsJToXuz9fNPm/Bd6D78yazz63wduj+fBmOg+/CT1QHzZ/Xya+KT3gv9Lo/yvR6/n+nfmJx1N30e/4/Dr2+Ke+Ub+vgJuj1TnmnfPsYfgZ9nlQ9Uf1XHVkAD8JD0OdL1RP1A9WRN+BPcBr0/JDfVcc+h1PVr8z/8rvq1iDZDXo8fWR6J8Mpquemt7/pfRQ+Bn0eU34qf5SXyp8D0Ocy5anyR/mp/PkRKo7fszj+An4Lv4eK4zstjofAoXAY9PnP5wHFneJtv8WFz4M+HygOFX8/WFx4fup+lEfT4Qzo+an7Uf6MUpzpush9Bb+G0+DP8Hf1DeW98gWOlP9Vd6DiSvGkuP0B/gZnql9YPCluR8Bn4QvQ/fuj2WU2nAPdv0+YXV6Co6HPD1Nt36oDa9WvLc+H276V9+Plb+R+NTvMh4vgYvUj5J4xO4yBbyrPVd+sbyluFC8brY+dgj53KX4UNxOsj82Cbu+5cClcDdcor8zeL8N34IfwI10HuXnwT7gcroAb4IvIvQpfU17B9+Rn6Pk0x/Yte22D29X3zD6jbf+y1xfwS+jxLz8rntbDLepH5nf5WfH0CZwIPX5Wmb4dcA/cqzpn+j8wvV/B7+D30P0rO+2E/8LD0P0r+3wNf4a/QLeH9n8anoFZ+Ds7bg/tezacA/+Cm5HfBXfDY/A4PK++idxkOAX+rniC89KS9ys7n7T9n1M9NrvOtH3/Ab3+yD6HzB5nYS7s4nVIdppmdpkL10CPe/kzK3pToMe5/DgfLoQbTd8p05cN5ocTTO8s07sAbklL3p/i7Uj25H1GME1/ny+RvF/F3a+270VwBVwJ3Y+KwxwwJ8zQ35c0fyoOl8NVyit4Ab3Z9ffy4KUwN8ynv+eH3BK4VHkENyjuoeeP9qm4KQQL6+9L2r61T8XLdsU9dDtnwgL6+3z6u2Jm17Vwq+IQetylW7xIb2l4GfQ41HW22HX2wf1aj300x2p+bYfe9tDPlZpX86WzP+jxkNfsXER/B01/v8/svMnsvBPuhX4e0nzaBX1doZ+DNIcWYZ9FofupqNm1DCwPK+jvMprf/ja7HoBH4FHo8SY7VISV9ffn9PcGLd5kh2PwBDyp+0OupOkvZ9epBGXfPab/sF3nuOLI5qsDVueyWdx0hL2hPy9QHKnuqd4pngrC8tDrfmGzWxPYAXaDXvd3mP1yKB5gMejnn0PWf3Qdxd/N0M896kPah66jeKwAvT8oz2vCZmbXHtD7hPL8PEw3e5ZIT9aveC9v16udSNan+D5i+rPIT5YnVUxPHVhXf/fS8uOU6csqu0CPX+VJDVgL1oMev8qTc+o/MAX9nn/So7hqCtvCztDzUPoUV2kwLyycHt5vY7tOc/2dRdMbm96c0O1bH7aALfV3M82uEcyAuaDHgfQ2M32dYE/ocaHrpJv+QrBkevi+25i9u8NemnPs/vOYnYvDUtDtcJXt/xp4I7xJ/cz2nWn7Lw2vgOXSk/fd2fbdB94J71K/tPjQvivC6vILdHvcYPr7wjug26Os6a8Kq8Emtv9utu+X4Sswh+2/mO37Ong99LiR3fvB/pofLE5k5xqwNlRc9jC90vcUfBoqHkuYfuntBDunJ+9PcXGL7XMAvCeRvE/FQyXbbx1YF/YxfykuBsHB8AH1c/OX4qIRbCw/wruRGwjvgw/DR+Bw1VPk6sMGyiPYUnEOPZ61z6FwtMWNx7P22Qpea3Hj9h0CH4SPwxHqN2bfpooT2Bq2gx53A+w6iptn1Hf+w5+6juKmC3T/PWb2GQafUD8wu1xt9mkD2+s+kNP8pbnrSTgS+tyu+aoD7ChaPvU2PconnyvKmx7l0RDzj+z4rPqe+UN26wrdv5J7Dro/JdcNun1fhC+p35g9e8Fr4FCTl5ziupXJS05x7HOp5kXVz1ehz6GaD1U3b5B9WN/V9EnPa9DPPRVMz436d74H0e/19Luk5/Qdbs6LzMi4yOKwK+wG52RepP/+L0tGsnwXk5+dmSyv3+FJj36Htzhnsr5Cpm9WZrK+k1C/g2tr+ragL6/p6wRnZibrlT7/Pd0lGcl6OpqeGZnJ+vz33NK3lv2kZSTr7WB6p2cm69Xvohub3jXoizOS9bY3vb9nJuvV76urmN7t6DtletuZ3t8yk/X630M4aHramp5fM5P1+N9V0O9wd+dM1pcP+TYZyXp/yUzWm2Z69DvDFaaniOn7OTNZ3yHov1e8kDNZvhWclpmsR/L/B1oWM5V4nHWdZfQWVdvFJeSeumcIO7AQQcUiBMVCARMDxQBBkAYLLEI6lJLu7pROEZAO6e4SpUFEUuRd62XvD2c/F8+X33qW1973zDlnzj7/MzNMQf+a///fG+Dl6ApvSV9hCbAkODO5wllgCF0p8dkIn5vSrl9x8Z2RuL6PiN8F8XlBfKYnrs9NvuvzFrgvcv1ug/558Z2WuL5ZoH9S/NbA59q061dMfKcmri99SvquPhv4nPhMSVyfS94VZhefJTieHZHtNzlx/Q6C/4pfcXCx+CXweQaclLi+9LtFfH4X/dPiMzFx/XL4rs/j4M7I9csA/VPiOyFxfS97rk9RcJn4ZAGLiu/4xPW9Dvq7xW8X/I5Gtt9Pieu3H/we+jbgQHAh+Db0NcEO4GLoL4AXwda+69tTfJeClcS3M3hefFv5ri/9hvB6T7t+n4hPS9/16ST6keJTVnzqgGfh18J3fenXA1zpuz4VwR7gmcT1a+67vvRZBG72XZ8fwUHgP4nr28x3fduJ3y6wjPiNBE8nrm9T3/Wl3yTxaQj+nbg+TXzXZ5zovxH9qcT1aey7Pl3EZz74Ydr1awf+lbi+jXzXl36DwHXgi2nXtxbYV3y/811f+owFN4kffb4GB4In4NfQd33pM8F3dfXB44mrb+C7Pm1Fvwp8R3x6gscS17e+7/rSrz9zSPyqg73Bo4nrW893fekz3Hf1n4NHEtfnW9/1oW4053vf1X/J+Q88nLi+3/iuL32mcd73XZ8m4AjwUOL6fs1xDY4Rv2eh+0r86PMV+1n0P4EHruLzLfMC/BN+X/qubzfxqyD6PxJXX5fnL/p+4H7xqQaOAw8krm8d3/Wlz3Rwge/6NAXbg78nru8XvutLnydFTx1z8yGOE5C5eQ58QnJzv/zebHCO/F4r8Hu2A3T7wGdQ/5n8vo/6Imn39y9i/ZALdQ/6ts8iHPdx8Exk+47BcewBe0P/s5zPNnAPWBn6lnJ+Q8HR4NjEPe+9cv6f+u7vFk67/mNFx/N+APzEd8/zH/Dxq5wff28mOFd+tzn4A88Dut1gXtTXlt//G79bKO3+/j2+q3sUrCU+xyLX5yJYMO36ZhafwmBN8V0lPhmhL5B2fSPxeQmsIb6bxCcHmF98c4tPdfE7Gbn6x8TnP4zva1B/p+/6VhPfpfBbDh6O3N95VH6Hfk+AVcWX+syofyTt+nioy38Vn3XQXxKfh8VvMMZTBvF7AVwhPjF0D4nfoMT1yyM+p0SfT3wGJq4P9UVEnwn1D4rPgMT1SYn+RXCt+GQHHxDf/onrm4b+dvHbDL8/I9fvfvHtl7i+vvjdBa4XvyNgXvHtm7i+1BfwXd1/YJ6069MncX2yiv5VzrficwP096Vd396J65sN+qfEbzt8UmnXL7f49mIOgNdDf5/47obfX+J7r/j2TFxf+jznu/oQ9bnEp0fi+mSE7lbx+Q0+B8TvHvHtnri+mcTvNXCl+N0I/d3i2y1xfW+E/jHx2wuff8XvLvHtmri+9Cnmu/qI85n4dElcnztEXxp8BzwkfreDd4g/fadIbi4HG0ludgVHQccc3SV5OtR3fXeDn6Zd31HgyMT13Sm+3X3XdwP4Udr17c91e+L67hBf+o0Xn3rg8MT12S4+1C0DV4M7fNenC68/+oLDEvd3tsnvtBf/d8VvaOL6bBUf6idznhCf73gc4BD2G7hFfKuI3wyOf9/1a8b1mfhuFt/Kvus7VXwXg43FtyO4SXw/5voV7CC+76Vdv42J61PJd32o7wxuEZ9yzHtwQ+L6VvRdX/qMApf4rk9dsBO4PnF9P/Jd347i94H4rEtcnwoc56Lvw5wUnyrMWXBt4vqW911f+kwEN7J/oW/AdQW4JnF9P/RdX/rM8119G3B14vqU812fvqL/les58WkLrkpc37LsH7CX+G7leEm7vkPAlYnr+4Hv+tJvBHNO/L5groG/Ja7v++wvcLD41RafFYnr857v+nQVnxXsj7Tr1w1cnri+7/L6EL9h4D7x+wwcCy5LXN8ynK/AH8XvffFZmrg+ZUQ3AFwr+hpcv4GdoV+SuL66H/ALqPsBrdN2nf69fQw87tt6/bt7OjgjbetvCK7wPjBPYOv2gH+Bp9K2rjBYJLDrM8ZXmCm2658BS4AlA1vng1nBbLGtKwd+GNj1ucH7Yru+JlgrsOsLgAVju74OWA+sH9i6ouDz4AuxrWsJtgrs+tfBN2K7/gewPdgF7BrY+tLgu+CHYPnY1vcHBwR2fXWwRmzXDwdHgZPAyYGt/xysCzYEv4tt/Tzw18CubwO2je36peAycC24LrD1ndlOYB+wb2zrd4A7A7t+ODgitut3gwfBQ4GtG8X2ASfHtu4kr+PArp8F/hzb9RfBfwO7fhG4OLbrs4RXmArt+jVsx9iuzwZmD+367WzH2K7PBd4b2vXHwROxXf8Q+HBo158Dz8d2fUHwSbBoaOsug9cid7Iktu4FsHho18dgktj1L4PvgGVCW3cd/94E75Q8nH6VPGwqeaZ1CyS/Tvi2rr3k18y0rbsAMr/yBrZuoeTY32lb96jk2ROBrbsIMs8yx7aOOfZiYNczx7LHdn0pybPyga27SXItT2zrPpZ8qx3YunySb4ViW8dcaxDY9cy14rFd3xBsKjnXOrD1JcBXJOfejG09c61bYNcz1yrEdn1PybeBga2rJLlWM7Z1zLEpgV3PHGsU2/VTJc/mB7auseRYu9jWLZH8Wh/Yuk6SY/1iW7dJ8mxXYOsGSp6NjG3dAcmzw4GtGy+5NiW2dcy1U4Fdz1ybHdv1ZyTfLgW2bp7k3JLY1l0GmXdeaOuWSe6ti21dJPmXI7R1myQHd8a2LqfkYe7Q1h2UXDwZ2zrm4iOhXc88vBDb9Y9KHj4V2rqLXE/wPkZi656WfCwR2jpP8jFrYuteklx9N7R1OSRX77rK/cxZoN7PbJG263Qf9zB4xLf1ur87BZyatvUexmsu8N7A1q1jXoMn0rauIFgosOsvg9fEdn1R5gRYPLB1WcAYTGJbVxr8ACwb2LrbuV7kOI9tXVX+3cP5PrB1j4CPgfljW/c1+E1g1z8LPhfb9Y3BZmDzwNa9BL4Kvhbbug5gR7BTYOveY/uAZWNb14d5Edj1VcCqsV0/GBwPTghsXW2wHtclsa2bDf4CzglsXSuwNfh9bOtWgasDu74n2Cu26zeAW8Ftga3rDw4Bh8a2bh/4B/hnYOvGghPAibGtOw6eCOz6GeDM2K4/DZ4HLwS2bg64AFwY27oMmH8z8++l0NatYHuDq2Nbl+Z8DmYNbd1mtje4LbZ1d4P3hHb9UfBYbNfnAR8E84W27hR4Bjwb27rCYJHQrs/I+6yJXf8cWCy060MwSuz6F8HS4NuhrcsO3g7mlPzsLbn4s+RoZclBPvek9Xsk/476tm605N+0tK27XvIvd2DrdksOnkzbOubg44Fdz/zLENv13K9l/nH/VXXcr2X+cR9Wdcw97sNqPfOO+7Baz5zjPqzWM+e4/6r13K9l3n0b2Dru1zLvisW2jjnXIrDrmW+lYrte92uZc50DW6/7tcy9crGtZ+71C+x65l212K7X/Vrm3sTA1ut+LfOvQWzrmXtzA7ueufdDbNfrfi1zcE1g63W/lnnYO7b1zMHtgV3P/BsW2/Xcr2X+cf9VddyvZQ5yH1Z1zEHuw2o984/7sFrP3OM+rNYz77gPq/XMOe7Daj3zjfuwWs9c4z6s1jPXuA+r9cw17sNqPfOM+7BazxzjPqzWM8e4/6r1BSXPnghtHfdrmWuZE1vHXHs+tOuZZ+nErn9ZcpD7tqq7TnKQ+7a9U1fYBxwFjgYrw68KWBf8MrTrp4BTU3Z9I7BxaNfPAeem7PrvwR9Cu/43cGXKru8O9gjt+h3gzpRdPxwcEdr1f4IHU3b9RHBSaNefBP9K2fWzwJ9Du/4i+G/Krl/E/aPQrs+C53FTnl2/hvtFoV2fFczm2fXbwO2hXX8beLtn1//Bdgvt+jxgXs+uPwX+Hdr1j4H5Pbv+X/BSaNc/Bxbz7PqQz99Fdv1bYGnPrr8NvD2y6z8Ey3t2/X18TjWy66uC1Ty7/hE+Zx3Z9V+D33h2/bM878iubwY29+z6V8HXIrv+e7Ab2N2zdW+BFcCPIls3DBzu2fWfgZ9Hdv0EcCo4B5zr2fr6YGPwe/CHyNYfB094dv0McGZk118A+Z4J3y/J59v6hSDfN+F7JmcjW8/3VPiei9bz/RS+78Ic6gsOk3wZAzKPqoKfSc58Fdq68ZI301K2rp7kTpPQ1jF35qXseuZOm9CuXyT5sypl636UHOoZ2rotkke7UrZusOTSyNDW/S75pPU/ST5pPXPpVMquZy7NDu36M5JPl1K2bp7k1JLQ1mWSvPI8W7dScmtdaOuYW9k9u565tSO066+T/Mrp2bpdkmMHQ1uXS/Lsfs/WHZdcOx3aOuZaAc+uZ679F9r1BSXfnvds3WWuWzEvpCNb95Lk3duercshuZczsnUfSP5V8GxdLsnBvJGtYw5W9+x65uBjkV3/ieTht56te1xysVhk676TfGzh2bqSko+lIlvHXOzh2fXMxYqRXd9b8nGEZ+sqSy5+Edm6UZKH8zxbV1dysU1k6/ZKPp70bN0YycVZka3Tf6+Bucj3T1Wv/44Dc5Lvpaqeuap1zNOemPd68e8RzuPgSLASrr+Pwc/BL8A6oa2bAE4CJ6dsXX2wIfhdaOtmg7+k7PpWYOvQrl8MLgdXpGxdR7Ar2C20davBbeD2lK3rBQ4Fh4W27gD4R8quHw9OCO36w+Bx8ETK1k0BZ4AzQ1t3FjwPXkjZul/BBeDC0NZlxri/1rPrV4GrQ7s+AmMw8WzdJnALuDW0dTeCt4C3erZuL9cvbPfQ1uXm30WeXX+S65jQrs/Hv4s4r3u27ix4AbwY2rqnwGf495Jn61Jcb4NBZOveAN/07PpbwFsju74MWBYs59m6O8F7wdyRrasEVgareLbuQfAh8OHI1n0JfuXZ9U+zXSK7vh7YBGzq2brnwZfBVyJb1wbsDHbxbN3bYDn+3R7ZukHgYHCIZ+tqgbXBTyJb9zM427PrW4KtIrt+O3gEPOrZumHgVHBaZOv0/fr7fVun79efjmydvs/POr7Pz9zkPilzj/uezEvukzLvuO+p9cw57ntqPXOO+55az5zjvqfWM9+476n1zDXue2o984z7nlrPHOO+p9Yzx7jvqfXMMe57aj3zi/ueWs/c4r6n1jOvuO+p9cwp7ntqPXOK+55az5zivqfWM5+476n1zCXue2o984j7nlrPHOK+p9Yzh7jvqfXMIe57aj3zh/ueWs/c4b6n1jNvuO+p9cwZ7ntqPXOG+55az5zhvqfWM1+476n1zBXue2o984T7nlrPHOG+p9YzR7jvqfXMEe57aj3zg/ueWs/c4L6n1jMvuN+p9dwfZV509Wwd90eZF+UjW8ecGOrZ9cyJTyO7XvdHmRu/eLZe90eZH60jW8/cOObZ9cyL6ZFdr/ujuSQ/+O/SqI/uk/Lfq2G+8N+tUR/mkdYxj7py3uU+GLge3ACWx/VUAWwJ9gP7c75HfXf+PcL1v/ivBfekXN+PwE/BZvJ7fcDRzAnuR4JD5HfHpVzfiuAn8jvfhK5PT/Hj37nUVxIf/n3LfeZ+4GDmEsj95WpgbZD7zdT1F/1Y7nemXH118fka/BYcgPqBzCfwV3ANWAP1NcHmYFuwd+j6DBKfTeDmlOtTS3wGgoNC9/zYPmPkfLm/PjHlnifb6ys5b+6zNwC1/7jfwHHB/YbpoPYn9x04Prjv0JTjHroB0j9s51ngUnAZyH6rIf3Fdm8Bdga7gDquedy8vuaDS0Ad3zxuXlftwE6gjrOJch4LQB1nDeS424Paf7zPMU/8FoK8f6H9yPsfbcS/A8j7Gbp/xPaZLe3DfR3dR2L7tJL24f6OtsNC6d914G5Q26OD9GtfcFRoHx/7kftI3D/aCG5N2cfJ/uS+EveTBvC64PpU2n2VnAfv/2g795Tj5/2fGXLca+V494LN5Dj7yPGNAfW6YbvuA4+Bep2wPceC08HV0m7cT+O+2CGQ+2K9pL24v8b9sckg98e03XZd5bh5X+sIqO048irnwftdU0EdB3vlPI6Cf3OekvMZI+cxDfwFnCntv0ba/TSYgfs7YHPpj97SD3PAFeB6UNuF9+3+AXn/TtuB9+3mgrx/p+sMts9+aZ/LoK4v2D7jpH2WgfvkeLVdeNz/MdfkuLU9ePxLQR2Px6U/ud96DtTxOEP6k/uu8/n/pV+Z4+zHu7g/Bv7PekD67wh4AuR6b4P0A9v/Ae6bgU9wP4f5Kv3BfvgHPAdm5npb2uec9O81/DsP1PE+X/p3ObiBvyvj8JL0b0b48r6wjscl0r+/gbw/rP3J/fDMctwhyP1t7Vfuk6+S498Icr/7tBw/r2OeRxrMAc6R418h57EZ3MlxIf3Pfn4BLA7q3xHs1xj9moC6zuT4fBl8DSwF6nqT4/M6+N0I3hS5583+86Qd9D779Z57/uzHddIeet99N7j/KuPzJvAOkNfJwyCvAx2n+zhvyHVyPnT9dRzdIL97s+f66vjZI7+3P3T99L4L/Xn/RMfhFvHl/RMdf2zvO8G7uY8L6vhjOx8Gj4LHOA7EN6f48vkH7beD4sfnHzQHc8jxch4tBJYAS4Kahzvl+DmvXoPxmhXMBmo7sx9534n3jx4Eef9I2539yftRvJ90hvMUqOPlDvF/HCwC6ng5JL4ZcB6ZQO1f9gefJ9HnQgpzn0b6mf3D50z0OZGMvI8kv1dIfJ8Ei4KH5XfYL/S7FszC+0rS7o9IO/H+29OgtvcFaSfeh/NAtv/D0u6vgxVBtjvnBbb3zeADoLYrz5/Pz7wI8jkabU+eP5+jyQ7yeRodH0/L8b4Dvue5551JzpvHfQfHTeQeb1E53nfB9z33OLPIcd4F3gNq//B+5xtyvLxvqf3D+5+3yPHy/mUhOd6Scrw1wE/BuuA1cvzZ5Pjzg4V5HqD239vSLnye6SPmn/RfTmkfPtd0P39f5j3Od8zrV8BXwQZgQ7ARqOtKznvM8es5/4HFwRI8T1D7h+OK94l5f/hjzmfSPxxXvF/M+8T5wNfFt6L41QQ/A7/g/Cn+D4hvAbAIxzXI/qkg/cTnv2qBfA6M/ZNX+onPgRXkdQnqdUL/GuJfB9Trhf75xb8oqO1dWdqH98t5n7w+80Xa5yFpH94/533zF1gHPf/O4PqzNvg52ApsC3YA9e8NrksLgU+Ab3C8ge+xX2V+5nFwnNSU42gJtgM7grquyyzjpoAcz+tgGY4bUMcH+1Gf92vMnJXxwX7U5/5eAnWcs/9agz+CnZgDMr7Zb2+C74NlwRpy3HXleH8A24M9wfxy/E/JcZfm+Oc4BXUcNpHz4fMXOu5elvPg8xfavi3kuPU5R23fUnK8+ryj/p3Fcd4L7A8OAPXvLY7rj8HqbHdQ5+2+YD9wHKjzclWwGvgNyDzg/D8SHAOOBTnfc36vA34Ffs3/LjnK42V+9pHj/gn8n3W15GcVOY9vQR0HHNd8robP04wGdTxwXPP5Gj5X8yXHkeTma9I+E0HNxRulfRpErr6U6Cd5ru4m0TUEef+X92/5vgvvx/L9Fd6X5X1g3s/l+y+8H8v3V3hfltcBr1teB/q87hSQ1wGvV14H+txuI/6uzBucJzguBoKTwZmgrqM4T3Bc1OT1DTYHef0xV3gdTgNngbzumB+8/pqALfg7Mr8yLzivjgdngAvBRSBzgvMtc4LzbD2wGdgB/BHUvGROTQfng4uZd5KPzKOmYDuwI39HrqPRcl4LwN/A9Z57/LyevpTzaQ92B/txfEPPdSfnsSXgKnAj51XouL7kfNYJ7AkO4O/KeOa44vj9FVwDbgU1hziuOI7bgr3BIbxO5XxGyvksBVeAO0BdN9eR8+oMdgOHgxx/XKdw3C0DN4O7QI43rkc4zrqAg8CRIMcZ12McX8vBLeBukOOM6y+Or67gYHAU21H8p4n/avB3UNd3TcS/F/gTf1/aZ7q0z0rwAKjrtabSPj3A8Wwv6PjcJa8XPkfJ64XPUe4E9flNXi98rpLXC5+rHMF2k/HL9x44jvn+wz7OszJu+f4Dxy/fgxjL9oOO6xPOj+vATeBBkPMk1yecJ/uCA8FJoM7zzP894H7wNKjzO3N/NDgOnAPq+orH+xd4CtR1FY/zZ3A2rwPUcx3E63cbeAg8DPK65XqI1+1QcDI4hfMgdFy3cb77A/wH1HUb57kJ4Fy2u/hp+9L3T/BvsKr4azvzdyaCv7DdJKc3SD+eBdl/zOX+0n+/cjxKe3N9tFba/Qyo60+ul/pIu88D+Zwany/j+7h8Xozv1/K5MT6nxufN+H4unxPj+7V8XkzXczzuc+B5zz3OhnK888EFnGdQz3UEc1e/u8Wc5XqBOavf29J11RrpN37PV78TrOuq3tKP/N6vfkdY11mczzmf8PtA+l0fXXdxXue8wu8H6Xd/OL9z/cP5nd+R0u9TcX7n+ofzO78vpd+tYr5yPcdc5XfB9HtjzFeu35ir/F6Yfn+MecF1FfOC35HT778xJ7ieYk7we3L6HTiuQ7j+4LrqZvjlBO8FHwa5DuH6g+ur/eBB8AR4ntc1/LmuYi7xu8r8XjO/r8xc4nqKucTvLfM7zvzusubqEWkvvm/A7+9pnk6V9uJ7B/wOn66nd8t44vfA9Ltiuq7meofjit8L0++PaX6flPbi+4j8brTm9yxpL76PyO9J67qN6yp+h4zfD+N3w3TdxnUVv0/G74rxe2LMR65rmYsx/BLwWZD5yPUsc3ELuBUM+O98y/XHeZDXnX4vUP9+4nzI606/H6jrZq4L+Z08/d6erpu5LuT38/R7fLruZ7vw+nsa1HU+24PXm8fv0VzlODnP8ft7um7l8XF+4/f4dL2dUcaFfg/u/wD62gwneJx12GWcllUax3Eaph5iiGEYmqVRRImFJRSkG5QQJBRllRAVhAUBWVxXpERp6QZJKenuhiGkBhhiCJcaOvx8dn7/F8//A7z5vuA5133uc65zneueseHJ/v9vAe7Bs3gLwyKSPJAuyRP4BCNDkozGt3Ec46fhNjyN8Zie+MeJdxYzECcj1sWpjJuDf+BJzEq8Y8Q5g8kZXxir4RTGzcbdeBsDxNtDnMOYjPHhWBBr4SjGT8BdeBRvYiTx9xE3FhMxlHi5sA6OYfwkXI9H8ApmIf5R4l3B25iNeLmxFL6Fk4mzBNfgOUzAJxjO8w7Z81KGBD+vHv5i8fda/GzEO0ice/gAUxMnBstgVRxPnA24CffjJUzGcyLwCPHv41NMQ9wKWAMnEmcjbscDmJq4GfEP4iXYe+l9smIDnE6c3+x99B5xmJ34ccS7g3cxjHhRWBLr41zirMV1GIvn8RFGRQS/x1VMb+9RHWuHBL/HUjxh75GBuJnxsr2P3qM0NsTFNn/N+zlGE+9SuuC4ft4UtxEuCg+O7+dN8XMQ/4Kt+33LH61/Y5xv673R8kfrHkP8W3aOdX6b4Go7rzqnORmv8/MQdX6aos7JZjsnuRg/iN9twUt4WXH43VBchItxGL+bgQfxPCZg6tAkWzCuK47HX/E33I/DGT8Ht+NhvI13sCXjvsAfcQKuwbX6f8bNxr14Cx/je/z+cxyNq3ErDub3S/AMPsHkrMO7/L4PzsZtuBt/YNw+PIB38T6+w+/H4Dhchxv1//x+mr33Dnxg7/0M2zO+s63DCNxk67BDecP4ZbgNj+NNDGFdmjOun/Yfp+IqPIwjGb8AL+BFvIL3MMBz2jC+J87HhbgEN6ivwVHEWYhH8BSmIn44tmVcL5yIM9Uv6F7HIcTZifvxJIYSNz02Y9xPOBZn6P7DE3o+cWZaPsVjouVVGp7TkfGfWX4twPWWZwc0L9UhPIQpiJsWW+v84C/q19Q3KN+sDngeqR5EELeV1QHPI9WDY/p/xs/C3bgHn+Jz7MS4bspH5Qlux534s8X1Oqm4kcz/fYvrdVJxT2vdGL8RT+BDzEDcj1RfcBpuVl+jOmd18ZjVx2zEa2d1cYrVx3Oqw4zbbOf1f3ZOH+HHOhd2Tn+387lF+W/75e+v/cvMvD+w/fJ10P6d0fqrj7C6fNTqchjxc2IPxv/L6vRkq9Ox6pN0P9p9F2v3XUriR2EHu+8m2X23F8/jPOIsx9MvqZ95iF8UuzO+P856Sf28ine1f3Y/qi7oflRdyIFf2T2p+qB7UvXhotbT+hnda+prdL/FEP8T3VN2n6nP0b12SetpfY76moyYCf+p/UP1MyfxFC4mzgY7t7G2vzq3ubA34wfZOZ5k+6xzfEXn0uqw8lZ1WHmbGz+1eqx8VT1WvibgdLsXz2Iy4ul+zItd7F6cg7vsfryGK62POGf9Q3aMxgGMUx8xD9U/XMB4XEq8XTb/q/Ye6bCv6rrNf6m9xyGca+fM712ds+L4pZ0vv291vu7pXrB+QesTautSAr9m3AxbnyO2Lvdxq90D6m/V1+o+KIav4DC7F9Tvqs/V/ZCID3RurL9SX6X+51VU36O+Sv2U+p6HOg/EicPreAOzEC8rTte+4XJcgWcxTnWCOPp+Up3Jh/nRv6NUX67jDZ0rqzOqL+oP3sAK6N9PqjPqD55h6kCSqu/qi1XfS2JFVD1XH6x6/gjTEs+/x9SH6X6qhFXQv8fUh+l+SkfcUPT+QPMuYvN+DV9H7xP0HnfsPR7jU/TvE71PdnufOujfJ3qfC/Y+WdC/M/W95efoTfTvTX1n+fkJI75/J6qfV19SFWuhfy+qj1c/EkHcSEy0uMUtbmNcb/HuWbwYfGDr4OdH61Bb39G4ydbDz5PWIzPmQa/nupcKYCksjf9Ar+u6n/7EJ/gc0/A8/37QOVY/qvPcSH8vQf+O0HlWX6pznYPn5Efv+/Uc9REN7Hne/yu++ofsgeDn+N811Lep7jfTdz363zfUt6ne5yVuPvTvRMXPbfHbo38vKn6CxS+O3j9rXarY+rRF75+1LqpPWp+i6H8PUH7p3lJ+vYV10f8uoPx6aPkVznOyqq7Y/VUQC2FZLIeV0e+xm3gLk2s/MAT9O0f7Usv25UP07xvtS6Ttyyuq+3bfl7D107p1Rv97x31bN61XWeWZ3cuqKw3R72PVj2j0vl/3cDv0fl/3bjHly0v6sjr2Xl3UD6L3rXrPLPZ+5bCS6p7d86rXuudVr9/Bz7Ab+vec6rjuf9Xx3FgeK+i9rT6onquOq050R+8HVcfzWJ2ojH7vl8eaWA/ro9/3qYiTCbNhFOq86h6oZue2CTZFnVPV/4Cd15yYC0va/CvavLUvbfCRzT+tzVv7UAS9X9T9onwdjePQ+8X8lr/t8EPlmdVP5bHqp/J3Hi7X/Wt9nvK4qOVvd+yPvp/v2/p8gB3Q97OwrU8JfBV9P1viR/gxdlUdtP0soH1VfuLf0et+U4vr57+v7hPLo1wW389/TfT6pnOn8zYdZ6PXO507nbcu+Dl6P6l6ovqvOjIKf8dV6P2l6onuA9WRtvhvHIh+PrTvqmNfYH/dV7b/2nfVrYpaN/R86mRxe2Mf1XOLW8bivo3V0fsxnU+dH51LnZ+V6H2ZzqnOj86nzs8AVB53tDzugV9jP1Qel7I8roI1sBZ6/+f9gPJO+bbC8sL7Qe8PlIfKv28sL/x86n10jgbhD+jnU++j89NUeabnMq4n9sKB+C1+r3tD517nBetr/1V3UHmlfFLefoP/xcG6LyyflLd1sDG+i76/A2xdhuIw9P2ta+vSHFug9w/9bd6qA9N0X9s5r23z1rnvrP1m3He2DiNxDI7VfcS4RrYObbC9zrnqm91byhvlyyy7xzaj913KH+VNN7vHhqCv93Acj1Nwqs6VrXdL7ICfYic9h3Ej8CecgBNxJjZjXCtsrXOFHbXP6OdpmM1b6/Urzte9Z+vTwuav9eqBX6Hnv/ZZ+TQD5+o+sn3XPiufuuKX6Pkz2eItwKW4THXO4n9icXtiX+yHvr9ap4W4Gteg76/Wpxd+i/9BXw/NfwtuxV2qmy+Z91Achj/jHMYtxiW4HjfgDt2bjOuNffB75ROOCATPV+u8yea/XfXY1nWwzftH9Pqj9Vll67ENj+s+fkneDLR1GY5T0fNe+7kb9+r+tTzXPo7E0TjL4m22eHswTnXY4g6xuKNwbiB4fsq3tTbPfXgEY3XvWd59Z/MegxNxEvo+Kg8P41E8pvvJ9lN5OAEn61zhTsYdwIN4Ek/hWdVHxo3D8TpHOFN5j35+NE/lzQWMV320eWueypf5ynv0dT6B5/C86rit6zScpzxEzzvFjbO41/GG7lfbTz1nrj1nOa7Q7xmvPlb9a5awJLOif1eqXz2Lcej5cMbW+SJeU/22dZ5t67wQl6F/D6k/zcE8Y9C/g9SHXsRL6Pt0ydb1T7yDd9H3bZGt60pci+vQ803rkIj38YHqiOWb1mE9bsRNej/GXbX4t+0593SPMW6pxV9jz9mgPGLccssX1TnVN+VNFBZB/3uB8kh1T/VO+XQe76DX/XhbtxCekw1zotf9BbZ+h5UPeFn7SVz/LtY89BzlX1H07x7dQ8PtOcrHu+j3g875Mwyzdc2Nfk/onO/AWFvPhEBwfOX7HXtesrDgeMrvtRZ/l/bJzslDi5McU4QFx9H52Gzxdmtd0PNX5+QpPseUxPf81TnZrvsH96KfP8VRXoViZoxGP4eKp7w6gmcwPvDi+aaz54SHvXiehyzuUfT1TYURGEBf1314DI+j54Hihlm87JgHPS/0nFiLfwGvBl783pG23rkwL/r7n7Z1voLX0Nchvc0/HxbCwujrcsLmfx1v4e1A8Lyjbd7FsBS+ERY873ibdyI+0b6gr0dBi18SX0Nfj5sW/xE+xhCbf06bd0t8Dw/b/C/bvAukT/Jv6HmjdX8dy6Dnidb5KSYjnvIyt8VVvAbYEJWPCRZfcbMTNzp98PyUF8VtnmWxXFjwPJUP92y+yTEFFrP9Ul5UxEpYGRNtv5QXaYmXDkOwNOPKYwWsitWwNj4nXirGp8YIDGBm9HzWPGtgC8sbz2fNMyPmR+WNr28VfBNrYh3dN7a+ocoTzIRZ0POurD1HedMIPf+S23OUNznQ96+6rU8trKv7wPYvg61PJGbVe1jfrr6rHtZH79vVX2UjTpS081TE4ug8eV+heIqjc1TF9kfr2Fj3nu2H1i0GfX81rgn6fmpcTvT1bYbNdd/YeubFfFjDxmuc8jqjjdc45bH3peoXVT9bofeh6g9VNwtqffh9jMVTnNbo3z2KpziF8C8CKyOaAQAAAACAAABgNgAARQoAAA==eJw123Eo7Q98/3G7szMzuzMzvzszszszM7vzMzO7MzOzO0m6SdJNkiTpdjtJkiRJ0k3STSdJkm6SpJskSZIk3XSSbjdJN0nSTZJ0k6T98Xl8zz+Pf1/PPz+f8/7ExwS/JKYxi69YxDJWsZaNbGOY3RzgR45zmnP8wnVuc5/fecqfvOMjQ78TmMhUZjKXBSxhBWv4ji38wC728yM/cYqfucQ1bnKXUX7jKa95x0fGPguMZzLTmc08FrOc1axnE9vYwV4OcZQTnOUiV7jJPR7ymOe85j2f/a4upjCd2cxnMctZzXo2sZ2d7OUQxzjJWS5ylZvcY5THPOcVf/GJodjARL5gJnNZxFJWsZaNbOUHdrGPQxzlBGe4wC9c5w6j/M5T/uQtnxj6PX18wZfMZSFLWcEaNrCVYXZzgCOMcIrzXOY6dxjlEU/5k3d8ZCikiy/4krksYAkrWMN3bOF7drKPQxzjJGe5yBVucJdRHvOM1/zFZ78fGM9kpjGTuSxgMctZzTo2sY1hdrOfwxzjBGc4zy9c4xb3eMAjnvKSN7znszjdTGE6c5jPYr5hNevZzHZ2sJdDHOUEZ7nAFW5yjwc85jmv+Isxf6CLKUxjFvNYxDJWsZaNbGOYPRzkCCOc4TyXucEdRnnEM/7kHZ8YGx+YwGSmMZO5LGAxy1nFWjawhe/ZyV4OcoTjnOIcl7jObR7wO095zXvG/GFAHJOYxizms4RVrGczw+zlMCOc4QJXuMUoj3nJWz4xPiEwhS+Zx2JWsI7NfM9uDnGcM1zgKrd4wB/8yXvG/lFgIlOZxXwWs4J1bGYn+znKSc5xhTv8zjNe85Gh54FJTGc281nKKtaxke3s4iBHOc0FrnGHhzzlFe8Z+8eBiUxnDgtZxirWs5lh9nCInzjFOa5wm1Ee84J3jEkMSGAqs5jPElayjk1sZxcHOMIIZ7nEDe7yG095xQeG/sRspjGbeSxiKatYz2a+ZxcHOcZpLnCVO4zymBe85SNDHiCTmM5cFvENa9jINnZxgKOc5ByXucl9fucZr3jPZ38a+JxpzGYBS1nJerayk/0c4QQ/c5lb3OcRT3nJXwwlByYxnTksZBnfsoFt7OIAP3GaC1zjDr/xlFe8Z+yfBSYyjTksZBnfsoHt7OIARznBOX7hBr/yO894zXuGUuxkGrNYwFJWsYHt7OYQxzjFea5yi195xHPe8onx/y8whRnMZRHL+ZYNbGMn+/mR45ziZy5yhZvc4yGPec5r/mLMCx1MZhqzmMcilrKSNWxgKz+wmwP8yHFOc57L3OAOozziGa94x0eG/jwwkal8yVwWsoQVrOE7tvA9u9jPIY4ywinOc5Ub3OE+D3nCC97wnrGpgQlMYQazmcfXLGc169jEdnayl0Mc4yRnuchVbvErD/mDF7zhA2P/QhdTmMFs5rOY5axmPZvZzk72cYhjjHCWi1zhJncZ5RFPecU7/vaiNo7JTGMWX7GQJXzDataxiW3sYDcHOMIIpznPZa5zl1Ee8ZQ/ecen3/r+MjCRqczkKxaxlJWsZSNbGGYPBzjCCGc4z2VucIdRHvGUP3nHR4bSdTGVL5nLAhbzDatZz2a2s5O9HOQoI5zlAle5ya885AnPecU7PjL2rwITmMJ0ZjOPRSxlBd+ynk1sY5jd7OcwxzjBGc7zC9e4xa885A9e8JYPjM0IfM4UZjCH+XzNclazjk1sZwd7OcQxTnCWi1zhJvd4yB885zXvGfPXAfFMZhqzmMcilrGKtWxkG8Ps4SBHGOEMF7jMDe5yn994wnNe8Y6PjH0ZmMBkpjGTuSxgMctZxVo2sIUf2MUBfuQEpznPVW5xjwc85jmv+cDQ3+hiBnNYxHK+ZSPb2MFeDjPCWX7hOnd5yB/8yXvGZgYmMp05LGApq9nANnawj8Oc4ByXucV9HvGM13xg7N/ayXTmsJgVrGMzP7CXI5zmAle5wyiPecEbPjDOH7jJTGcW81nCKtaxlR3s5wgnOc8VbnGfR7zgLZ8Y/3d2MoM5LGIZq/mOLfzAXn5khLNc4gb3+I1nvOYDQ9mBSUxnNvNZwkrWspHt7OIgRznFea5wm1Ee8Zw3vGfM3wfEMZkZzGEBS1jFerayg30cYYSzXOI6dxjlMS94x5icgOdMZRbzWMJK1rGZH9jDIY5zmgtc4Ra/8jvPecNHxv1DYBIz+IrFrGAtm/iePRzmOGc4zy/cZJTHvOAtnxifG/iCmcxjCSv5jq3sYD9HOMV5rnCL+zziOW/5xPh/tI+ZzGcJK1nHJn5gNwf5idNc4Cq3GOURz3nNR8Y5hElmJvNZymrWs4Vh9nGYnzjDRa5zl4f8wUve/Xag808BCXzBTOaxmBWsYQNb+J6d7OUQxzjJWS5ylZvc4yFPeM5r3jMmLyCOSUxlJl+xkKWsZA0b2MowezjIEUY4wwWucIM7jPKIZ/zJOz4x9P8DE5nKl8xlAUtYwWrWsZEtDLOPgxzhOCf5mUtc4xb3+Y0/eMkb3vNZfmACU5jObOazmOWsZj2b2c5O9nGYnzjJOS5xjdvc5zf+4CVv+MDYf9bFFGYwh/ks5htWs56NbGcneznEUUY4w3mucIN7POAJz3nNX3xiqCDwOVOYzmzm8TVLWclaNrKVYfZwgKOMcIbzXOYGd3nAI57xir8Y8y8BcUxiGrOYyyKWsZK1bGQbw+zhIEcY4QznucwN7jDKI57xJ+/4yNjCwOdMYQZzmM9ilrOKdWxkOzvYxyF+4iQ/c5Er3OAO9/mNP3jBG94z5l8D4pjIF8xgNvNYxFJW8C3r2cQ2htnNfg7zEyc5xyWuc5v7/M4fvOQtH/jMwW0CU5jObObzNctZzXo2sZ2d7OUQxzjJOS5ylVvc4yFPeM5r3v92QPxvAfFMZhqzmMcilrGKtWxkGzvYw0GOcpxT/MxFrnCDO9znN57wnFe84yNjXwcmMJlpzGQuC1nCStawia0Ms4/DHOMEZ7nIVW4zyhNe8pYx/66DL5jFPL5mOd+yke3s5gBHOck5LnOL+zziBW/5yLjiwBRmMo+v+YZv2cQP7OEwxznDBa5ym/s84gVvGfsfgYlMZw4LWc5atrKDfRxhhLNc4hq3ecATXvCaDwyVBCYzna/4mhWsZTPD7OUwxznDJa5zl4c84SVvGfOfAfFM4UvmspDlrGEj29nFQY5xigtc5TajPOYFb/jAUGlgEtOYxXyWsIp1bGGYvfzICGe4yDVucY8HPOElb/nI0H8FJjODr/iab1jLRraziwMcYYSzXOIG9/idZ7zmPUM+UEliOnNYyDJWs4Gt7GAvh/mJ01zkGnd4wGNe8hdj/zswkWnMZgHL+JYNbGOY3RxihLNc4jp3echTXvGeofLAJL7kK75mBWvZwjB7OcxxznCR69zlIU95xQeG/sc+pjObhSxlFd+xlR3s4zAjnOEiV7nDA57wig+MexOYwgzmsohv+Jbv2MZODnCUk5zjF25wj994yiveM/Z/AxOZykzmsoDFLGc16/l/EuJFPw==AQAAAACAAADMBgAAFgAAAA==eJzT0hoFo2AUjIJRMAqGNgAA9C4diA==EQAAAACAAADAcAAAVRMAAFMRAADuEQAAZhMAANwTAAD/EgAAqBIAADwRAACTEgAAbRQAAHwTAACZEwAAxBEAACYRAADmEgAAehQAALgQAAA=eJydm2eYVeUVhZ1j7sSSZKzpPeRJ1Bild5AiSEcUpQhEo2joIE0EVFAUUaotCgqCiBUEOwQELIAiIiCKqKiI2GPsIcb8cK15nvPm7svh8Gd/d761115rne+ce4eZ+e5+3/4rqF5R9m1dqPqp6meqj5Wl8Z20uEB1ueoK1StVvxPwu68TcJ5jfKeAjzqXQ49x1H8ldBpHvyvgq3y/NP5W4T6BDusyrp/6/wE+6nSfefsFOM41b7+c+VD/cuj9rnC+7oOFW6r6L+i5FeekvhaXqS4DP3W733PqBzjqMH/9nHnRzzLoNo5+/wFfzGuccA+qfow5S5FXWy0uVr26orQe8ruvbeDP+LYBH3V6/sU586LfZfDF+2qxcP+EDusybrR4rqoordN95h1dKI7jXPOOzpkP9RtnXp6TC4W7W/Uj6FmMc3KiFsNVJ4GfusnvvhODHIz3Pvmo0/OH58yVfo2bFOQ1Srg7VT+EnruRV3Mthvr9BPzUTX73NQ9yML45rotx1On5Q3PmSr/GXRnkdZlwN6l+AD13Iq8OWpyjOhH81E1+93UIcjC+A66LcdTp+efkzJV+jZsYPIemCfc+dFiXcd015wrwUaf7zNu9UBzHuebtnjMf6jfuiuCcXCncQ6rvQc80nJNTtbhE9XLwU7f7Pcf9xFGH+U/NmRf9WOclwNGv+S4P8hruzwGq72LOQ8jrBOekOgH81ON+zzmhUBxHHeY/IWcO9FOpEzj6Nd+E4L6aI9w74Pc84/r68wT4ON995u1bKI7jXPP2zemb+o27bC++l6nuhh76nqB6KXgjPuPpJ6tv6vLcCcBRt/kuDe6PEcI9qvo25niu8U3sW3U8+KmH/O5rEvgzvglyNo46K+fnzIt+jRsfnJOZwu2CjkdxTnprzjjwUaf7zNu7UBzHuebtnTMf6jduXHBOLhVuuepb0DMT56S933f9PAQ/dbvfc9xPHHWYv33OvOjHOq8Ajn7Nd0mQ1xDhblfdiTnLkVcDLQb7+x/wUw/53dcg8Gd8A1wX46jT8wfnzIt+jbs4uK88f4nqm9BT+f8KmjNG9SLwRnxjkO+++qYuzx0DHHWb76LgnPxNuLGqb2DOEpyT6lqcpDoW/NRDfvdVD/wZXx05G0ednn9Szrzo17ixQV7nCXef6uvUg7yqaXGh/YCfut3vOdUKxXHUYf5qOfOiH+u8ELj/81uRxvO+miDcDvB7nnEdNWc0+DjffebtWCiO41zzdszpm/qNGx2ck4uEm6v6GvRMwDlppUV/+wE/dbvfc9xPHHWYv1XOvOjHOvsDR7/muzDIq69wC1RfxZy5yKumFkNUR4GfetzvOTULxXHUYf6aOXOgH+scAhz9mm9UkNfFwk1WbV6R5lmAvFpr0UX1AvBTD/nd1zrwZ3xrXBfjqNPzu+TMi35HgZd5ddfXv5d8W49X/Vz9Z1Sk8VP1+gV94d+qj6lOw/u9+c3j/akBzjrMTxx1me8x5EAfj0GvcfTtfc9nXt2sR/gaSZqnO/KaotfP6gv/BT/9mb87cpoS4KzD/MRlzZV+rPNZ5EW/L8AX3+e6ak5Fkp7TDfMn6/VLmEs/5uuGXCYHOM81L3FZc6R+414KzkkX9X+t83dEkubpinOyVIunVF8FP3Wbvyv8Ly0Ux1mH+YnLmhf9vArdxtHvS/DFvE7XnP2Fr5uk53VBXo9qsV51//LS/szfBTk9GuCsY32Ay5orfTwFvcbRt/fXB3mdpvlVhW/mviTtw/hHtNij+n3w05/5zeP9RwKcdewJcFlzpY/10GscfXt/T5BXZ83/0u/HSZrnNOT1sBarVI8AP/2Z3zzefzjAWceqAJc1V/qxzlXA0e8e+OJz+1TN/2WSntMZz4OHxLMbedGP+dzv/YcCnOfuDnBZc6T+VdBL36eI9ydJuv9U+H5Q/W+CjzrN537vPxjgPPfNAJc1H+rfDb28PzqJ9xvl9OckzXMK7o8HtFir+iX4qdv85vH+AwHOOtYGuKx50c+X0G0c/b4JX8zrZM3/vvCNkvS8Tsjrfi22qh5QXtqf+c3j/fsDnHVsDXBZc6WPtdBrHH17f2uQV0fN/7HwTf3cTtI+jF+ixRuq3wM//ZnfPN5fEuCs440AlzVX+tgKvcbRt/c9n8+hDpr/8yTd3xHPocXq34W86Md87vf+4gDnubsCXNYcqf8N6OU5aS/eL3T+6iVpng44J/dpsdJzy0vrNr95vH9fgLOOlQEua170Y50rgaPfXfDFvNpp/kHCN0jS89ojr0VabPa5gw76M795vL8owFnH5gCXNVf6WAm9xtG39yv97ZfGt9X8w5J0fzvcVwvVvx150Y/53O/9hQHOc7cHuKw5Uv9m6OU5aSPeH/o5kqR52uKc3KvFDtWflpfWbX7zeP/eAGcdOwJc1rzoYzv0Gkff3t8R5NVa838rfKskzdMGed2jxfuqh4Of/sxvHu/fE+Cs4/0AlzVX+tgBvcbRt/c9n/dVK83/UZLub4376m71v4686Md87vf+3QHOc18PcFlzpP73oZfn5CTx/tSfY5I0Tyuck7u02Kn6s/LSus1vHu/fFeCsY2eAy5oXfbwOvcbRt/d3BuekpeaX+T5M0vqNu1P9TyMv+jGf+71/Z4Dz3KcDXNYcqX8n9PKctBDvgf4ck6R5WuKc3KHFJtWflJfWbX7zeP+OAGcdmwJc1rzo42noNY6+vb8pyOtEzf+d8MclaZ4WyGuBFh+ofoX86M/85vH+ggBnHR8EuKy50scm6DWOvr+CP/veX/WVsnSfdXv/dvRTv/vd5/3bAxzzIG5vufG54J+D3ai6HT8Xq/x/V/WfrTpf9QLgyGc8f66W9edv1DUfOoyjbvPND3w30/7RyumPqs7ZuJHCfSqefwW5m8/93h9ZURznuZ8GOOq5HfONo37vfxqc17vE9zJy9f4wNdyG6+x57DduWHA9jB8W8FHHfMw/QDhfv3OFm6q6DXo874aydF9V8XVTnYc51ncW9HGe+6sC53nGVw34qHsedDFn854V5Jz1ejCn25DDgcL5/aCpzmO5ztUf/P2K3wdUff58rt0/Qq+fE//Hqj/UBTlENTr/nm9e748IcNbpecRlve/o17qfQ57Mw74+Bo45ee4heJ9mrt43L+/jJvDdFO87w5E/83B/U+Q6PMAxX+L2dh34/PV9cL3qS7gvjPN9cabqXJzbiO/M4L7Kev9R11zoMI6650EnfZ+gPI5RTr9XbYI8h+n1Z+L5KMjdfE1w/YYFOM81L3HUY76P4Jv6vW9entdrlc+LyNX7vdQwVPPmYh77jesVXA/je+F6GEcdczGfn4unCDdLtVFFmsfzjO+qxbmq51eU1u1+z3E/cdRh/q4586If6zwXOPodCjzzGuT7QfUFzJmFvOppMUB1yF70uN9z6hWK46jD/PVy5kA/1jkAOPo135Agr5HCP6C6BXPmIa+mWlykegtyox73e07TQnEcdZi/ac4c6OcW6DaOfs1nPJ+j04XbDH7PM+4M9d+MnDjffeY9I8BxrnnPyOmb+m+BXn7+7SPcVaqboMf6+uHzbw3xnaY6C3Osvxb0mcdzawQ46vKcGkF+5q0V5Ed/s6B/X68Hc7oZOfB8ef581eehxzjrGaQ6E7wR36DAT1bf1DUTOoyj7lnQyefQUJ9D1Y2Y47nGN9Lib6o3gZ96yO++RoE/4xsFfNR5E/Tsa170OxO+mFd/4RapPgc9tyCv2lqMUr0R/NTtfs+pHeCow/y1c+ZFPzdCt3H0exN88b66RrgN4Pc843qq/+/g43z3mbdngONc8/bM6Zv6b4TeyPdtqs9CD30PVL0BvBHfwMBPVt/UdQN0GEfdf4dO3h/nC3e/6nrM8VzjG2ox1ueyorQe93tOwwBHHeZvmDMH+rHOscDR7w3wxbwuEG6i6jOYcz/yaqbFKarnVZTWQ373NQv8Gd8M18U46vT8U3LmRb/GnRfkNUy4q1Wfhp6JyKuxFqerngt+6na/5zQuFMdRh/kb58yLfqzzdODo13zG8zlk3tmq6zDHOM/po9obvBFfH+S7r36oy3P7AEfd5usdnJPRwj2suhZzZuOctNBinOo54Kce93tOi0JxHHWYv0XOHOjHOscBR7/mOyfIa4xwd6iuwZyHkVdLLc5XPRv81EN+97UM/BnfEtfFOOr0/PNz5kW/xp0d5HWJcDNUn4KeO5BXGy16qP4V/NRNfve1CXIwvg2ui3HU6fk9cuZKv8b9NXgOef49qk9Cj3HWM0L1LPBGfCOQ7776pi7PHQEcdZvvrOCcDBDuctUnMOcenJM6Wpyseib4qYf87qsT+DO+DnI2jjo9/+ScedGvcWcGeQ0U7hHVx6HncuRVV4vxqn8BP3W733PqForjqMP8dXPmRT/WOR44+jXfX4K8xgt3s+pqzHkEebXz50bVXuCnHvK7r13gz/h2uC7GUafnn5czL/o1rlfwHPL8e1VXQY9x1jPS3z+BN+IbiXz31Td1ee5I4KjbfD2DczJJuBWqKzHnXpyTzlpMVJ2EHKjH/Z7TuVAcRx3m75wzB/qZBN3G0a/5jGdejbX/a/28q5aqfw7mn68Zf6sW7/oLOnjRz93Mbx7v31oojrMO8xOX9ed99GOd74KPfj+DL+a1Vbke4t/bTdLzGiOvOVpsUz0SOujP/I2R05wAZx3bAlzWXOnHOrcBR7/vwhfzaqj5ic+Tfw8gSfswfrYWz6geBB30Z37zeH92gLOOZwJc1lzpxzqf4XmF323wxed2A+n8WZKe0xDne7Bev4W86Md87vf+4IriOM99K8BlzZH6jTMvf/5TX7w1ha/v3+P17wEnaZ3uG6TX34i3oI3Dykv78DzzeX9QgLMuzyEua370Y9xh+L0Z5mBf3yBn5mSeQnC+6knPV2WYA50D9Xp1IT2Xvs1XH/kNDHCea17isuZN/caZl8+huur/lX8/2r8HW5bWV/n9jF6/oy8cWl5at/nrwf+AAGcd5icua170sRp6jaNv778T5FVHc6oI3y5J89RFXv31+kN94Ufgpz/z10VO/QOcdZifuKy50sc70GscfXv/wyCv2przG+GrJWmeOsirn16/py/8p1Dan/nrIKd+Ac46zE9c1lzpxzrfw3OIfj+ELz6HamnOv8vSc2pjfl+9fhxz6cd8tZFL3wDnueYlLmuO1G/c48E5qan+/6qveZLmqYVz0kev1+gLPygvrdv8teC/T4CzDvMTlzUv+ngceo2jb++vCfKqoTlHCl89SfPURF7Xa/Ga6teF0v7MXxM5XV8ojrMO8xOXNVf6WAO9xtH31/DH+6q65vynLN1fA/OvU/+T4KMf89VALtcFOM99MsBlzZH6X4NenpNq/v8Afx/m51VZWp/x12qxUfXA8tK6zW8e718b4KxjY4DLmhd9PAm9xtG39zcGeVXV/F/492KTNE815HWNFm+rHgx++jO/ebx/TYCzjrcDXNZc6WMj9BpH3973fN5Xx2v+n5J0f1XcVzPU/znyoh/zud/7MwKc534e4LLmSP1vQy/PyXHiPUD4Y5M0z/E4J9O1eF71C/BTt/nN4/3pAc46ng9wWfOiny+g2zj6/Ry+mNefnYfwJybpecchr2labFCtKC/tz/zm8f60AGcdGwJc1lzpxzo3AEe/z8MX8zpW8w/352R/v5vAh/BTtXhFNYEO+jO/ebw/NcBZxysBLmuu9LEBeo2jb+97Pp9Df9L8HyTp/mPxHJqi/heRF/2Yz/3enxLgPPfFAJc1R+p/BXp5To4R737+PsGfH31/4pxM1mKdall5ad3mN4/3Jwc461gX4LLmRT/WuQ44+n0RvpjX0Zp/qPDtk/S8Y5DX1Vq8rPpj6KA/85vH+1cHOOt4OcBlzZU+1kGvcfTtfc/nfXWU5u8pS/cfjfvqKvU/gbzox3zu9/5VAc5znwhwWXOk/pehl+fkj+I9WPiGSZrnKJyTHnq9xXzlpXWb3zze71FRHGcdWwJc1rzo4wnoNY6+ve/59s2/i/ffJR+VpPf598yfMA8/78qK4yt9BriIz/hPwMf/Zzfef7fpv8vsqtoNfO7j31/77zh/p1qlPJ++yvOdpPGcZxz1ma8KrmvWv0+lf/shjvlUgX/eV8aPU52heg14jDdPW9Ueqj2Rb1Y9xFlH2wBHXVUw3zj66QHdld8HwW9P+Pq/35sSbp7qbeg3zv0DVAcGOvc2P5o7IMBRT0/MN476B0Ivz4nxd6kuVl0CHuPNM0x1tOqYnHqIs45hAY66BmK+cfQzGrqNo98x8MVzYvwa1bXoN87901VnBDr3Nj+aOz3AUc8YzDeO+mdAL30b/4LqVvQb5/7ZqnNyzo/mzg5w1DMD842j/jnQy/vD+FdV31LdBR7jzbNAdaHqopx6iLOOBQGOuuZgvnH0sxC6jaPfRfDFc2L8x34fRb9x7l+quizQubf50dylAY56FmG+cdS/DHr5ucb4z1S/Uv1G1R/QzOc+861QXa261t//5NRHnHWtCHDUtwzzjaO/1dBvHP2vhT/jmM86+Of5Mv4g4Q/2B9/90zj3b1bdEvjZ2/xo7uYARz3rMN846t8CvTxfxh+meqTqL1V/BT73mW+76muqu1X/BzLR5bJ4nJ2df8xWhXmGEfQDnakC6pooCFbAopuAtd0U2GYnP2qzZOI6BQoLKGjQimAnCmKX9A/RtgOliXag1dUfm8Iqra2YqdtsFMV0ii010U1tJ1Zwbadg23XqknlfJ/ku9uQ9nP5zf3qu57nv57znfd/vfZ+vxzf6Bvzf/34YPfgDGXDYoA/0twb1P/6DghsWfangji/6vSGOPkdHX+7r3xeO4yOjP+3rz8NxHH/84CP78adEf0f1cNS/E/1lMU8v/8r3nYJznjfkD+f8v1TeIeH6xH8senp0SnSq+lFHv/ei70cHD47P4G75zJHrvYJzPvrhD+f53ld+OM/PPO+L8/nBD97XF/yM6EzVw1E/LDpc57Otf+U7rOCcZ4j84Zx/uPJGBhwi/pzoedE/Ux94+hwdHRk9vmMec+Q4uuCca7j84TzPSOWG87zHay5fJ/Bzo59VffO6kfqx0XFFzl7+le/YgnOe4+UP5/zjlNdzwy+OXqx6OOonRid19K98Jxac84yTP5zzT1Jezw2/LLpc9XDUT45O6ehf+U4uOOeZJH8455+ivJ4b/troatXDUT89OqOjf+U7veCcZ4r84Zx/hvJ6bvi10XWqh6N+dnROR//Kd3bBOc8M+cM5/xzl9dzwX4v+jerhqL8welFH/8r3woJznjnyh3P+i5TX73/wd0Tvid6rPvD0WRK9IrqsYx5z5FhScM51kfzhPM8Vyg3neZdpLl8n8N+MPqB6OOqvia4scvbyr3yvKTjnWSZ/OOdfqby+TuC/E/3n6L+oDzx9vhC9MfqljnnMkeMLBedcK+UP53luVG44z/slzcXcOTzg3w76QD868AP9yMD+x+9JwdvR/zykvx/11HH8HnH0h3dfc+4H58cbfnZ0TvRU9YGnz4l5woyJ/rqYr1ee5vV2YH/ePnAfUb7K13PAjVE/z81xfH2+4NdHvxpdpD7w9JkXnR+doPPXNg/cej1u9oFzrjHyh/McE5TXvvDz5evzBX9X9O7oRvWBp8/l0aXRxR3zwN2lx80+cM41X/5wnmOx8toXfql8/b4D/63ot1UPR/210dUd/eG+pcfJ/eGcZ6n83Q9+tfr5OoF/Kvp09GH1gafPzdH10S92zAP3lM6/feCca7X84TzHF5XXvvDr5evzBf+j6AvRf1UfePrcEb0zemvHPHA/0uNmHzjnWi9/OM9xq/LaF/5O+fp5Bb8r+rrqm98nU/jN6AMd/eF26XFyfzjnuVP+7gf/gPr5e1X4t3hf5X04+lP1o45+/xh9JPrd6JaO+eDe0uNhv+Z77qLfFnGeZ4vywnn+72o+54N/RPl8fcHzi99Bg/rXw1H/dHR7R384/ODdH855HpG/+8FvVz+/DsGzVzmcz0fqA08f9i87o9/vmAcOf3j7wDnXdvnDeY7vK6994XfK19cJPPuTUT5vA/rXs1/Z3dEfru3+y3l2yt/94Hern68TePYjvxsdrT7w3iv9KrqnYx64tvsr59otfzjPsUd57Qv/K/n6fMGzB/mD6GnqA+9906HRdzvmgWu713Iu+r2rfp6D44eqn+fm+JDiewt49iWfip6lPvDeKx0VPVznr20euLb7K+c6VP5wnuNw5bUv/FHy9fmCZ3/ymeifqg+890+josd2zAPXds/lXEfJH85zHKu89oUfJV+/bsOzd5mn+uZ1KPXsZU7q6A/Xds/lPKPk737wJ6mfrxN49i6XRBeoD7z3UadFT+mYB67t3su5TpI/nOc4RXntC3+afH2+4NnXXBldoj7w3mNNjZ7eMQ9c232Zc50mfzjPcbry2hd+qnx9vuDZ81wXXaE+8N5/zYye1TEPXNs9m3NNlT+c5zhLee0LP1O+Pl/w7Iduit6gPs3fPaQBe6S50fM65oFru59zrpnyh/Mc5ymvfeHnytev2/DskTaovvm+OPXsmRZ19Idru8dznrnydz/4Rern6wSe/dDfRTeqD7z3a8ujizvmgWu7x3OuRfKH8xyLlde+8Mvl6/MFzx5pS/Tv1Qfe+7ZV0Ss75jnQvZ5zLZc/nOe4UnntC79Kvj5f8OzJHo8+qD7w3st9OXpdxzxwbfd/zrVK/nCe4zrltS/8l+XrPeEfHfGBjsn3L2MH9j/+lzn+8xT+Qvss6uhjHm5swVX94DlOP3+PCH9y9OPRz0T/XP2oo98+TkgOjIqO7uuWD4488PaDcz76jdbn049rTuc2x/zMY87nZ7Tm9/MK/sro2ug69YGnz9To7Ogcnd+2ecyRY2rBOddo+Te/P2qe2coN53nnaC6/v8Pfwffmqoejfkn00iJnL//Kd0nBOc8c+Td7B+W/VHl9ncDfy/fnfD+uPvD0WRa9JrqyYx5z5FhWcM51qfyb90nNc41yw3nelZrL5wv+segT0SfVp/m7lvRZE10bXVfk7pXHHDnWFJxzrZQ/nOdZq9xwnned5vL5gt8R/UH0h+oDT58N0duitxe5e+UxR44NBedc6+QP53luU244z3u75vLrEPyPoz9RPRz190c3FTl7+Ve+9xec89wufzjn36S8vk7g90R/xvuw+sDT58HoQ9GtHfOYI8eDBedcm+QP53keUm44z7tVc/l8wf939H+i76oPPH2+F30i+mSRu1cec+T4XsE511b5w3meJ5QbzvM+qbn8vIIfnF+UhwzqX9+8TqTwueiOImcv/8r3uYJzniflD+f8O5TX1wn8h6LHRo9TH3j6vBB9LbqrYx5z5Hih4Jxrh/zhPM9ryg3neXdpLp8v+JOiH42OVx94+rwVfTu6t8jdK485crxVcM61S/5wnudt5YbzvHs1l59X8GdEz1Q9HPUH87l28P+fs5d/5Utfc85Dv0P0Odz5m+PF9xbwfxg9OzrNfQb073NY9IjokTofbfOYI8dhBbdfLvnDeZ4jlBvO8x6puXy+4P8kem50lvrA0+fD0eOiI4rcvfKYI8eHC865jpQ/nOc5TrnhPO8IzeXnFfzs6BzVN6+XqT8xOqbI2cu/8j2x4JxnhPybz8vKP0Z5fZ3A/0X0ougi9Wn+LjoNxkdPjU7omMccOcYXnHONkT+c5zlVueE87wTN5fMFf1l0afQK9YGnzyeiZ0TPLHL3ymOOHJ8oOOeaIH84z3OGcsN53jM1l88X/NXRldFV6tO8zqfBJ6NnR6cVuXvlMUeOTxacc50pfzjPc7Zyw3neaZrLr0PwX4n+teqb19XUnx+9oMjZy7/yPb/gnGea/OGc/wLl9XUCvz56S/RW9YGnz7zogujCjnnMkWNewTnXBfKH8zwLlBvO8y7UXL5O4L8RvUv1cNR/Lnp5kbOXf+X7uYJznoXyh3P+y5XXc8Nvim5WPRz1V0VXdPSvfK8qOOe5XP5wzr9Cef38gP929LHoP6kPPH1WR9dEb+iYxxw5Vhecc62QP5znWaPczfelmvcGzeXrhD0ae6Nx0T59/+A9239Fn9Uein7Uc5x6uLZ7vD7lqnydH45+vk7g2eucH/20+sB7n3ZC9Ji+/n5t88C13duNU77K13Mco7z2hec4vj5f8Ox5bor+lfrAe082N3pOxzxwbfdxznWC/OE8xznKa1/4ufL18wqefdDfqr75vJJC9kWXdfSHa7uPc5658nc/+MvUz9cJPHudLdH71Afee7JV0c93zAPXdh/nXJfJ3xzzOKd9za0srhN49jrbVN/83plC9j436Xy19Ydru3/bolyVr/PfpH6eG559zU7VN9d9CtnnfF3zt/WHa7tH26Zcla/zf139/PyAZz/zH9F/Vx9477E2R+/V+WibB67tvmyn8lW+nuNe5bUv/Gb5+jqBZz/zC9U3v2+lkP3Nwx394dru0Zxns/zdD/5h9fPfI8Gzd3kv+uvoPvWjzvurbdHHo491zAfXdl/mfA/L3xxzOSec539c8zkf/Dbl8/UFz17n0EH965vXlxSy93m+oz9c272a82yTv/vBP69+vr7g2c+MiHLfx2HqR533Xq9HfR/JA83XfG88qD9f7dmc73n5m+t1v0vP/7Lmcz7415XP1xc8e56TVQ/n/di+jv5wbfdvzvO6/N0Pfp/6+fqCZ68zOcp9Hz+mftR5D9YX9X0kDzQfXNu9m/Ptk7+5Xve79PxwffL1+eL4IcXnd3j2QdNVD+e92lCd37b+cG33ds7TJ3/3gx+qfv49Cp49D/dVPEd94L0n830kDzQPXNt9nHMNlb+5Xve79Nwj5evrBJ590FzVN6+DqWdfVN2fspd/8/lWj1O1j2t7X0znH6t+nhuevc5i1cN5P1bdn7KXP1zb/Vvb+2I6/0T189zw7GeWqR7Oe67q/pS9/OHa7tHa3hfT+Sern+eGZ+9yreqb17nUs5ep7k/Zyx+u7T6s7X0xnX+6+nluePYsa1XfvK6lnj1MdX/KXv5wbfdcbe+L6fyz1c9zw7M/+Zrq4bx3qu5P2csfru1eq+19MZ3/QvXz+x88+5O7o3eoD7z3Skuj1f0pe+WBa7u/antfTM+xRHntC79Uvr5O4Nmz/IPq4byHurqjP1zbPZfzLJW/+8FfrX6+TuDZB3H/x++oD7z3T76P5IHmgWu753Kuq+Vvrtf9Lj33jfL1dcI/Hx09JjpY3LPp93L0lehzup6o61OdOfvS91lxzvOc/OGc/xXl9dzwo6KjVQ9H/e7ono7+le/ugnOeV+QP5/x7lNdzw4+Pnqx6OOr3Rvd19K989xac8+yRf/P5V/w+5fXc8L8X/X3Vw1E/MP9i0MHd/Ctf+ppzHvrhD+f8HKev54afEZ2pejjqh0WHa/62/pXvsIJznkHyh3P+4crrueFnRc9TffN9WX4YER3Z0b/yHVFwzjNc/s3nTvEjlXe/z73RudHPqr753JsfxkbHdfSvfMcWnPOMlH/zOVH8OOX13PCLoxerHo76idFJHf0r34kF5zzj5A/n/JOU13PDL4suVz0c9ZOjUzr6V76TC855JskfzvmnKK/nhl8VvVb1cNRPi07v6F/5Tis455kifzjnn668+33ujV4fXaN6OOrPjc7q6F/5nltwzjNd/nDOP0t5PTf8+uhXVQ9H/bzo/I7+le+8gnOeWfKHc/75yuu54W+L3q56OOovjl7S0b/yvbjgnGe+/OGc/xLl9dzwm6KbVd+8ruaHq6IrOvpXvlcVnPNcIn8451+hvJ4b/tHoY6qHo/766JqO/pXv9QXnPCvkD+f8a5TXc8M/FX1a9c3zMT/cHF3f0b/yvbngnGeN/OGcf73yem74HdHnVQ9H/Yboxo7+le+GgnOe9fKHc/6Nyuu54X8c/Ynq4ai/P7qpo3/le3/BOc9G+cM5/ybl9dzwP4v+XPVw1D8U3drRv/J9qOCcZ5P84Zx/q/L6ezn4vdGD8t89GXhQ/z7N/08+fR6Nbo8+0zGPOXI8WnDOtVX+cJ5nu3IfrOP0fUZz+TqBHxodpno46l+MvlTk7OVf+b5YcM7zjPzhnP8l5fXfUcAfFx0dHR89Wf2oo9+u6J7o3ui+jvnMkWtXwTnfS/KH83x7lB/O8+/VfHA+P/s0/37fh4WbHZ2j+ub6zg8n8t/b4X5cB+hf+dLXnPPQb4z+/t/5OU5fX1/wi6KLo7dEb1U/6ug3IToxuiC6UOenbT5z5JpQcM43Rv5wnm+i8sPdUnALCg7/heJ8fcHfx/NA9XDUfz56dzFPL3+4+/R4uj+c8yyUvzn6Oqff5/hnvrf/7ejQ6BDx3me8Gn0xukPfE1PvfYi5tnsT59ohfzjP8aLy2hf+Vfn6fMHzff8J0WPVB957kDejr3XM07zOiq/2Lc71qvzhPMdrymtf+Dfl6+cVPHuCU1QP573JOx39m/c18dVexnnelL/7wb+jfr5O4NkTnBGdqD7w++1Por/pmAeu7Z7Guej3G/XzHM1x9fPcHMfX5wue/cKnon+sPs19TdOHPcRR0Q/p/PXK87+rlyXaeJydnWfQVsUZhkFeEBULNhQxIChiBxGxIgr2aCwYVEQ/goolxcTYYySjY4sxWLBgS8YZZ2LBZJzYJlEnPxJFUWOJoqCxd7HFFktmkvv6Zrjiztn35c+tnGuf53727O45nP2+c3q1evz3T6TH7tGto71yYBVxE6PbRFs5sIK4PcRzfNVCXvhVlbdPj2/mJ0X3UXs42n8rOrDD/HCTxDs+nP2sqvyOBz9Q8Vw3/NTooWoPR/v1oyM6zA83Vbzjw9nPQOV3PPgRird0/r63+KOiR0e/pzjwxNk8Ojq6cYd+4I4S7zxw9jVC+eFcx8by67zwo5XX/QV/fPSn0R8pDjxxto+Oi27doR+448U7D5x9jVZ+ONextfw6L/w45fW8gj89+nO1h6P9rtHdOswPd7p4x4ezn3HK73jwuymexwn8edHzozMVB544+0cnRffo0A/ceeKdB86+dlN+ONexh/w6L/wk5XV/wc+OXhadpTjwxDks2hU9uEM/cLPFOw+cfU1SfjjXcbD8Oi98l/J6XsFfF/2N2sPR/ujoMR3mh7tOvOPD2U+X8jse/DGK53ECPzd6a/S3igNPnJOjp0SP7dAP3FzxzgNnX8coP5zrOFZ+nRf+FOV1f8HfG70v+kfFgSfOedHzo2d06AfuXvHOA2dfpyg/nOs4Q36dF/585XV/wc+LPhj9q+J0r1uJc2l0dnRWh37g5ol3Hjj7Ol/54VzHLPl1XvjZyut1CP7x6BNqD0f7a6LXdpgf7nHxjg9nP7OV3/Hgr1U8jxP4l6IvRxcoDjxxbonOjV7foR+4l8Q7D5x9Xav8cK7jevl1Xvi5yuv+gl8cfS/6huLAE+eu6N3R2zr0A7dYvPPA2ddc5YdzHbfJr/PC3628nlfwS/X8n/bquWR7ONo/FJ3fYX448sE7Ppz93K38jgc/X/E8TuBXjq4S7aM48MRZGF0UfbRDP3Dkh3ceOPuar/xwruNR+XVe+EXK6/6C3yi6cXQ1xYEnzr+iH0ef79AP3EY6b84DZ1+LlB/OdTwvv84L/7Hyur/gp0QPie6lOPDEWS9/MTw6oHdnfuCm6Lw5D5x9EW+AONcxQH6dF57j5O0bro/4K6NzohdGZyoe7Yg3PXp49MDoHh36g7tS59H54OxvuPKboy77hLtQ/eC67M8c/hhfvcQvVDuO0+4G9WdtPriFOp+OCzdHfpzX86p7vYiuEl1VHPpwClsYXRR9LvpIryXjOs/DBc4+iP+wOPt6RPlL9SyS75aOE/c51eX+gh8U/VZ0cMEfcV6Nvh59o+C7yY85fLxa4OzrOeWHcz2vy3dLx4n7hury/RD8iOgGag9H+w+iHxZ8NuUv5f2gwNnPG8oPZ/8fyq/HCfzm0S2jYxUHnjhfsHAkcc9WZ37M4eOLAmdfxCM/nOvhwBeK53p7aqK7v+C3je4S3VVx4InTO7pStL/6rdaPOXz0LnD21VP54VzPSvLd0nHi9lddnlfw+0b3U3s42q8VHVTw2ZS/lHetAmc//ZUfzv4Hya/HCfx3owdHpygOPHGGRNflfq1DP+bwMaTA2dcg5YdzPevKd0vHibue6nJ/wU+PHhE9UnHgibNJdLPoyILvJj/m8LFJgbOv9ZQfzvVsJt8tHSfuSNXleQV/XPTHag9H+22i2xZ8NuUv5d2mwNnPSOWHs/9t5dfjBP7k6KnR0xQHnjg7RSdGd+7Qjzl87FTg7Gtb5YdzPRPlu6XjxN1Zdbm/4M+Mnh09R3HgibNXdJ/ovgXfTX7M4WOvAmdfOys/nOvZR75bOk7cfVWX5xX8xdFL1B6O9odEpxZ8NuUv5T2kwNnPvsoPZ/9T5dfjBP7K6NXRaxQHnjjTo0dGZ3Toxxw+phc4+5qq/HCu50j5buk4cWeoLvcX/O+iN0VvVhx44hwfPSF6YsF3kx9z+Di+wNnXDOWHcz0nyHdLx4l7ouryvIL/U/TPag9H+7Oj5xR8NuUv5T27wNnPicoPZ//nyK/HCfxfon+L3q848MS5IHpR9OIO/ZjDxwUFzr7OUX4413ORfLd0nLgXqy73F/zD0Uejf1cceOJcEZ0Tvargu8mPOXxcUeDs62Llh3M9c+S7pePEvUp1eV7B/zP6gtrD0f7G6E0Fn035S3lvLHD2c5Xyw9n/TfLrcQL/SvTt6DuKA0+cW6O3R+/o0I85fNxa4OzrJuWHcz23y3dLx4l7h+pyf8F/HP0q+rXiwBPnvuj90QcKvpv8mMPHfQXOvu5QfjjXc798t3ScuA+oLvcX/PJ5Pr1CdMWeS8aBJ85T0aejCwq+m/yYw8dTBc6+HlB+ONfztHzDud4FqsvrEPz60RFqD0f796MfFHw25S/lfb/A2c8C5Yez/w/k1+MEftfoZPZ3FAeeOP3zF+tEh/buzI85fBDfnH0Rj/xwrgef/cW53qGqy/0F/+vo7OhligNPnIOih0W71G+1fszh46ACZ19DlR9udiHeYQWOuF3ivG8Hv0DtOE676xt8lfLBOX6X4pojrvN7XaAe9nVW6/HNnPfHno8+quf1tPO+mrna/Tfi4auU1/6fVzzXA89+zRC1h/M+15uqvzY/XO0+GnHwVcpr/28qnuuGZ39mQ7WH8/7VR6q/Nj9c7f4YcfBVymv/Hyme64Znn2UrtYfzftVSrSXj1+aHq90PIw6+SnntH454rhue/ZPd1B7O+04rq/7a/N3XJ/GlfS3i4KuU1/5XVjzXDc9+yf5qD+f9pLVVf21+uNr9KuLgq5TX/tdWPNcNz77HIWoP5/2j4aq/Nj9c7f4UcfBVymv/wxXPdcOznzFD7eG8DzRK9dfmh6vdZyIOvkp57X+U4rluePYvfqL2cN7f2U711+aHq90/Ig6+SnntfzvFc93w7EP8TO3hvJ+zi+qvzQ9Xu19EHHyV8tr/LornuuHZXzhX7eG8L7Of6q/ND1e770McfJXy2v9+iue64dlPuFTt4bzfcqjqr80PV7ufQxx8lfLa/6GK57rh2Re4Vu3hvL9ylOqvzQ9Xu39DHHyV8tr/UYrnuuF53n+L2nevL/kP9gNOUv21+eFq92GIg69SXvs/SfFcNzzP9+9Rezjvf5yr+mvzw9XurxAHX6W89n+u4rlueJ7TP6D23fM2/8Fz/EtUf21+uNr9FOLgq5TX/i9RPNcNz/P3x9QezvsWV6v+2vxwtfsixMFXKa/9X614rhue5+0vqj2c9yNuVv21+eFq9zuIg69SXvu/WfFcNzzPzd9VezjvP9yp+mvzw9XubxAHX6W89n+n4vm5IjzPv3vk+dRHigPv/YR50XvUH7V+4Gr3LYiDv1Je13GP/Dov/Dzl9TiB53n4Sj2XbN89P/MfPC9/psP8cLX7FPYzT/kdD/4ZxfPvm8Dz/HsDnm9HByke7bxf8GH0reirHfqDq92fsL9nlN8cddknnOt/S/XZH/yH8ufxBc9z84PUHs77D8N6d5YfrnZ/w36IN0yc/Q/TvsMy4ZYWz3P0y6OzojOiRyou7b2/MC16cHRUdKT6q9YvXO2+hn0OU35z1GefcDPUH64Lbpb6z/3gOsxRh/dT4BeoHce97zGtzXxwtfspl8uP8/o6x58douOj60dZNuHnpbBlknDZ6Pv5+wf1/Jf2/JlX4OyD+PPE2Rdx3hfnOji+rOa36+Y4+T0fyUvcb0e3j64bXSm6lNrb7+rcf0Tfzd8/E31IdRHP9Zur7Sf7fEj54VwXx98V537g+NLqd/ff6hpHLR0nLnG6+y1/z/ikDnyuGV0x2ku8630puiA6X35o7/4yV9uv9jVf+eFcxwL5dV74l5TX11XyEndlHUftq/R7io47v8DV1o02/X6k/S9UPNfNfVz/6ArRZcQ9lvbPRp+OPq78tOurdub6F7hnxdnP48rvePBPK57nxzLi14gOjC4r3nlfjL4cfUJ+aG/f5mrrs68nlN/xqOfFQjzX+7Lqcn8tF10vul10k2g/8U8mzmLGXRJ/kv//h/zQnjxPFjj7IP6T4uyLOJ+Icz34XCzO9X6iutxf/cTvFJ0QXV68/fVL3OWjT8kP7V2fudp+sC/ikN/xqKefzmtLx7vjtpbk/e9Hxi3zeEB0rejaUcYt7TzPX4i+En1N47p2vWh3PuGXuPYDt5Z4+4VzvS+qHseDf03x/u/f6VGui8Oi/P43v1fO9aP73+m6zr4T9e+d+/frm65H7V7X2/29/qbfj3c/vFPI6356Vf3g+2PWadbX4dEtomOirD+sa7T3+v5e9Kvo11pfvf4Rz9cLc7XXldp11/W+V4jn+herLjj321fqj5aOE/dr9ZfnAfeH3J+Pjm4a5XwzPmjn+/0vo59qPLR7P9ruvy9qx63reUd+nZd++LKQ1/30qfrB10HWL9anzaKc14Hivc59pvPtcdR0H9Puelo7fl3PZ4V4rvc91eV1g/V8aHTj6KjoSMXFB+1Z99+Ofhz9d/Rz5W/3egI3VLzztttP1Elc+4cbJd71wbmfPlP9jgf/ueJ53WD9Zz4xD3gvBu/b4P0jtPP1gnnj93H4/SS172Vpuj7B1b4XpXbdqH2/iPvpC8VzPzNfOH+cn3HRPaOs+7Tz/OJ89o2R1aJfyV/TPG33elQ7/lwXPs25XvJSD5z7h+PE9XrDeWFd3zG6c5T3l/BeFM4f7b3+L5c8K0b9/hS/J6ZpXNRed+Bq30/jevHteLXvg3F/9VY/wLl/OU5+Xz8ZH6xTfF9iYnSceK9f/g5FX/lpWv/aHaf4I659wE0UX/pehuvsK879xX0Mz0n3itLvo8X7uewAnQ+Ph9r7pNrnv7Xj0PXg0/Fc73Kqy/3FesJ6sXf0oOgY8V531ogOi/r+vem+vN31zb6IN0yc68Gn47neYarL1yXmN/P3gCjv7+G9QLwnqfv3arQeDI4OiZbeo1S7rtS+Z8q+Bxfi1b7nqfY9SO6nIeoHX5eY78x/vhvDd1QmRzl/nG/ae53w92bW0Xn2uGhad2qvt3C13/2p/U5O7fh2P62h+p0Xfh3l9TxgfWG9OTB6WJTzzXijndejodENNB7avW7Wrn/tzgPXN7QQz3UPVl1w7qcN1A+eBzwfYb1jneqK/iB6QpTn1LT3cxXWtw2jY6M7RPvIb+1zmtrn6LXrt+vpI5+O19Vjybocj+P011j1Q0vHyb+D+snXT+YN3zXiu0XTopPF+/tPfN9oow7nJVztd6bsax3lh6v9XpPr3Uic1w3uY9jP/k702Cjzg3lHO+93rxkdo/njedm0b97S8ab7K/tesxCvdt1w/WNUX0vHHW9MoZ9Z7znPnJ9jol1R5g/tfH3gfG6h+eL5VXudabrfanec1s5/172h6nJe+C2U1/3Mes96fnh0epT3HnLfQztfHzaN+r2IQ+Sv6T6q3etRu++dpK7S+xvdD5sW8rqfNlE/uJ/Zd+R6wPp8UfRXUfYdaed9WtbzKdHJ0X7y17Tf29Lxpv3Q2uuZ6+gnn45H/VMK8dw/k1W/7zf4eaTx0TnRG6KXR1m3WA9p758vOzx6XHSa1jevm+Rt+nm12p+bch34cbzadd31r6m64Nxf09QPcO7f49Rvnges/1wPvh89Mcq8Yh7SzteLLaPjNe/avV+tvT61uz64nk3l13nphy0Led1P49UP7meuA9zf8B1GvrP4wyjXCdr5/sffbdyqcN1puo+qvT7B1X5Hs/Y7k653C9XjePBbKZ7XG9Z/zjPn56Qo72/lvbBHqL2vG5zXHaN+f6zfp9t0HWrpOPlL7xuuHbfEaXrfb+37cN1vOxbyul93Un95HnRFOe+c11OiZ0T5dxPtfH/FOJgQ3T06Vv5q79M43vTvudpx6zrGyqfjUf+EQjz3z+6q3/+O5Oevfx/9Q5Trw3jx/Fz2qdHTdN1o9+e7zeHj1AJHnKbrqus4XH7hXPdpqs/jkvsj7mtuj94VvTs6Qe18PzUzemb0rKh/7q3p59ngau/f7G955Xc86ptZiOf6z1R9LR0n/1mq3+sz4511ne/t8r3ZmdFfRBn3tPf67+/08h3aPTU/aq8n7c7L2u8l135f2HVPUD1wMxW39J1eOOLuKc7nh/tQ7jOviv4yelaU+x/ul2jv+9cjogdE946W7qtqn1/U3jfX3s+5ri3lF879sLfqg6Pf/gM47p0GeJydm3n4V1Wdx/npFxcUxRCXXMKp0WoKy8wlJzcsBTU1FUJtcR1FEFk0QNkEbQKRtHLJSRABwSkBhdS0FETtmSZMc2lqMjPNtaKpCdz7w/eL5+HVnOeeO/zzevje9/2cz/tz7z3n3HPPb0a3d/6d2HmHZ4ZBt2vC67ttePzUcLP8vkk4LJwWXhpeEn45vFDn7ZN4nwmPCY8KDwkPVn60RzyO7yPdNOndHjrikGepXfs5RPmis/+j5M/5oT9G+W2a37urXeJODceHY6V3fkeHh4WHKh/iE+dQXYe2dSAO+ZXa5Th+nKfbtY52fV+OC6eEV4SzwsvDSTqvf+IdGX4uHBIOCgcoP9ojHsf7SzdFereHzvkNUPuOh7/PFeLZ9yD5Quc6DVEdfF9ODqeHX1OcKdIPTJwTwpMU33kTnzgcHyjddOndTtt64YO4ztc6x0PXI79zfw4Pua5cj7nh7eFt4ZXhBYqzr+5DruewcEJ4cXhyeJDyJx/ic3xf6SZJ7/bREYe8S+3W3t+uz7CCzvU6Wf7Ruc4TVLeOjhP3YtV18/zO80D/RH9+bXhdeFV4WUg/xvkeJ04LTw9PCY9Vf17bP7Ydn4hDvqV27fe0QjziUAf76eg4dbN/dK7v6aqbx4Np4YxwfniT4uGH8xiPmS+NCIervbbjO7oZ0ru9tnW2vxGFePZ9mnyhc52Gqw5+DugH6RevDueEN4bzQsYZznf/+aVwaHhueN7/c/yq7bfROc8hah8dPonr/NHNkd7+0N0ovf1bR57nSefngP4UP5x3c7gwpJ/kPM8XaGdkOKrQj9bOO2r7+drrYR/DlKfj4X9kIZ7rM0r+XWeeK56bW8JF4b+F9F+c5+dwTDg6PEvjQm1/2Pa5Jw55ltrlOL6cp9ulDmMK7bpOo1UHzz/p73hf/Ul4dzhfer/3XhNeqn6NfIhLO6X35tp+13leU4jn/EcoT3T2e6l8+b6kv1gcLg+XhdznPBecR38yLpwUTtRz4OemqX9Ct1h6t9f2ebWfkcoXHf5p3/6sI+5E6Vxn7neuH9dnVbgi5H7nPI+vXM8rwhl6HsivaZxu+xzW3n/2MUZ5Oh7+ryjEc31myL+ff64v1+WB8P5wofS+D2aFMwvjQ1O/3/Z+c16j1L7j4WdWIZ79zpQv35f0q1wv6rwyvCf8d53nfpjrcnl4WXhBy/68o+O0S5zR0tXeb8TBTyk/juPfftyudbTreTDzDq4z1+fx8NfhL0LeNznf8xWu6+xwUTgvnKB8a+c/te/Dtfet/UxQno5HPWYX4rlei1SHjo7T/jzVyc8Bzxf9+n3hg+F/hjxfnOd+f3r4tfBqPX+140fb5558iet80D0ovfNFZ7+z5Mfx0F+teFvkd56HmSHrMqyn3Bk+H74UvhDeEX5P8QanHa/vXBIuDZeFt4VTwsnyQ17k6fgdHScf4gyWrnYdynW4pKBzHSbLDzrXbYr8o3Pdl6p+HR3nuixTfTs6Tvu3qf5+7uhHV4UPh6vDh0L6Wc7zPOC68NrwSo1Htf02ulXSuz10xCHPUrv2d10hHnHwbz/oXKdrVQePP8y3eD94IvxV+EvFJV/O93vEnPDmcL7at6/a+V7T+0vbetrvnEI8+79OvtC5bjerHh0dJ+581cvPAf3oj8PHwv8KnwzpZzmPfvab4Q3hTeGNhX6bdmjXcWr7d3TkS1zng84+rlae6PBNXPuyjrg3Suc6M89gXCMPzn8qZJ7BeZ5HO++FoechTfPxjo43zX9qx+XaOtvvbPlxPPQLFc/9Df0SzxPPwe/C58Knw5/qfPdnPD9LwsXhLeG3WvaPHR2nfeJcK11t/0AcfJXycz2WFOIRh3rZNzrXdbHq5e+O3wqXhj8P14avhf8T/ne4QHHOSPyLwrnhinBVeE+4IDxf+ZMP8Tl+hnRLpXf76Jzv+Wrf8fA/txDP9Vkhv+j+rl7yj871vUf1QufrsUr19fya/Tr4Jo914Rvhn0LGM8ZJ1iOJd6quF35Whg+Gd2scLK1jNu0nQrdAeueBrnb9tPZ+qJ0vuH5zVAe3S/1XFtr1dblb9UXn6/igrofHO/ptxslnwxfDl0P69fXrwhpHbw1vD5cXxomm8bh2PEFHvsR1PujsY6HyRIdv4tqXdcRdLp3rTH/OvO/18M3wzyH9NOd5XvhA+FD4A/Xj5Nc0v2w7zjjvBwrx7GOJ8kRn3z+QL3Su00Oqg+cVzFO4zlyf/w07Xe/w1fyfdSDO9/yG63pvuDq8P1ykfGvnS7XrVLX3rf0sUp6ORz3uLcRzvVarDh0dp/37VSevvzP/4P7g+v81fEV6z1O4T+4Lv6d8muY5HR2nPeIslq72fiYOPkr52e99iud+g35mTbhx6r1JyHXiunIe/dD3w5+EP9V1LPV/pX4N3Rrp3V7b+w1fxHXe6Oz7Xvmyjrj27zovCXtEv0XYPWR+t1TnjU+8x8LHw4fD0nyR9ojH8fEFHXk9VtDVzlPtZ67yRWf/D8sfOtfrcdXDzz/riZtFv2O4efi89KwzPhr+NvxZ6PXF2vVK5/FoQee8lqp9dPbzW+WNzn5/Jl+uF+uzrJdum/N2CLfv2lDvddynwmfC3yif2nVg2rGuFI88nyrEs49nlC86+/yN/Hj8Z52c70l839k057875HpxH3C+923yXeiR8FldV98vTftAOzretJ5f+32s9n52PR4pxHO9nlUd0Lmej6pO7mcZ/5jPbZfzeoZv5XfGR87z/PDp8MnwR+F9yq9pvEVXOx8lDnmW2rW/pwvxiIN/+0HnOj2pOrjf4PsPzyvPzy7hXdJPThw/18+HU5VP7XcmjtMecSZLV9u/OP+pytPx0D+veNxX6ImHftfw+9K5vRfCaWqfeJw/rVDHWj/OZ5radzz0Lyien8e/hN2i7xXuHG4TdnVteN4PE+8/wl+Evwt/Gf5Y+dEO7ToOOo7TLnF+KB35Etf5oOuSn1J+O6sO9oVuG9XJvl1n5qvMS3uHfcK+YUd19vz2V+Gvw5fC1cqv9v2tdj7t/FarfXT4Iq7zRtdHdbAv62j/Jek8/jO+8R7Me+l7cv4/hluGjHOc730gvM++GP4xfKIwHjbtK+noeNM4XPteb58vFnT2/Yj8oHOdnpB/dK7rH1Uvj0u8d/BesXv4D+Fa6f1+siZ8JVyhfGrX4Wvfg5zXCrXvePhZU4hnv6/Il7/DsH7Muu/7ct5Hw4+EO4Wsl7FeRxyvP/8hfD18LXwuLK3v1X7frl3/rl1XtP8/FOK5Dg/IFzrX7TnVAZ3r/brqh87X4zXV1+MB6/583+mX8/YK3xuu03n+XrQufCP8fbhS+dV+d6r9HuG81xXi2cdK5YnOvn8vX+hcpzdUB48H3Adc5/3Cg8I9Q+bXzNs53/fPRumYNg9fze+l+X3T+nXb+7b2vcK+0L1aaJe64M/tul7EoQ7oXF+OE9fPAesqrId8Ijwk/Bjjvs77u3WYxN8ifDO/L5OP2n1qtes+zo94bxbi4Y98Hc++ibOF6uw6rT/O/Rkd9zHzA+ZvzKc+HH4q/OeQcZ3zva7PPGxtuHXa3SR8Ub6avhOgq53H1M5H7Yd4m6iersfaQjzXC99rpXM9aW/rwvVh3Yz7iOu/b3hEuHe4ra6P91Fy33SlvXeFb+V3r7M17cvs6HjT+l7tc2E/xHurEI96dOk5R+c6Eeddut6uK8e7Cv0U8w++q3885/UPB4bMFzjP3+nfDnumnW1Dzydqv/fXzouc99uFePZBvG1VP/vHz9uK5/oQp2ehzswr2M+yT847LDwy7Kc6e38MLxBbhX3Cdcqvdp9N7XzHeZOH49kH8fqozvaPn27SuT595N915n2G95ADwmO7Nmz3NZ3n95/uif9u5dV2nxK62vet2jrbH/k6nn13ky90rhPHuxfqzLyXee3+4XEhz9EbOs/z5I0Tfyc9Z233/6CrnZfX9hv2R76OZ9/E20l1dp04TlyPn6yLM99lnjogPDzcg+dI46fX05nf9k5724R/yu8/l6+eisvxJ6VrWsdHt5XyLbVbO8/fQ3WwH8ejbvh3PNeVeL0LzwHreB8Kjw4/o3kX8zDOY53vr+H2ib+D5l2epzWtG6IjH/Rur+388Gj5dN7o7Jt4O0jnOnF8+0KdWYfie/yh4QnhgeHuqrO/72+Z+LvSTrhGfmv3CdSujzlv8nA8+yDeZqqffW8mX+hcJ45vWagz66esjx4Tfik8ivFBdfZ6646J/8Fwu/BZ+a1dt639buu8ycPx7IN426l+9r2dfKFznThO+14vZn/J58Mv6P5Yf/9Fz76TPfLD+3Ud2+5fsY48iG9d7f1rH1sqX3T2zfE9Cvcl71G8/wwKTww/TT+i+9LvXX0T/z1hr/AZ+ajdx1H7nuf8iNdLdbE/8nU8++4lX+hcJ473LdyXrOewn+ez4akh6zPovc9n5xz4J63bkE/TPiF0tetKzpP2Hc/5d5xnt//bL8eJ6/kZ+0PoR+gnvhger/zIl/O9r4T+5QPhLmrfvmr3ZzXtZ2lbz9r+0/XAl3Wu087yj8513UX18v3MeMB3vIPD0zVOoPf3wB458GH15+RT+z2xdlxynrTvePZBfj2Un33uKD/uZ9lfQj9F/3Ja+Enqrn7W+9fojz7EdQm9/6NpHxy6pn0vbftZ+yDeptLZ96by5XbRc7xXoc678TyEQ8KzwpOYR6jOL6fBP4fvTfyPhO8L/6K60A7tOg663dQucV6Wbojydz7oPig/pfzOUh3sC91JqpN9+/nfRdfvjPDMkP1E6H0f9Av3DNvuS2p7vzkv4u1ZuH/x00/PGTr73VO+XC++m/G9d2g4LNxP9fL35b1zYJ9wI+VT+3269vud86R9x3P+GylP6xwPncd/vr/wPeTscGJ4jvpz+nfO93ebvcIjwo+pX2+7TwVd7fei2vHHfsnb8ey/h3yhm1iId0QhHnrXydeHdVLep3lfHhF+JTwvPEDXx/tYeM/ePzwu3C/srnyb9sWgq13PrV0fsJ/uytPxqAe+SvGol32j+0ohHnqPg6yvsu/hgvCr4TjiaBz0PoqDEv/4sH+4sfKr3Y9Ru+7rvMnD8exjY+WJ7quFeMdLN051sm/Xme9efK8aHs4Ox4QfVZ39nWzf8JzwwPB1+a3dX1T7Xc75Ee9A6eyPfB1vdkF3TqFd9PbtOrPOzD6RseG88PxwgOrsfSeHhueFnwh7K7/a/Su169/Omzwczz56K0/r8G8/6OYV2kXvfp3v5uwTmR5eGV4fXsr1Vb/u/ScnhCeHZ4bHhF3Kt/a7fe2+F+fZpfYdD7/kXYpHHewH3ZWFeCdLd73q6zr5OWD9n/X9c8Obwkkh+0nWf79Ng3wP+Hg4PBwQbq38avev1H6fcH5bq33Hwx/5Ot5NBd3wQrvo7dt15jsVzyHP27fDWeFg1dnftXge/yUcEu6m/Jq+j6E7XO0SZxvpavuRwfJTyu/bqoN9oZulOtm3+xv2M7AP4eJwTjhT4zbzAs73PohPh0PDwWFp/tC0PxRd7f6L2nmL/ZK3412gOtgPujmFeEOlm6n6uk5+DvieeEo4OVyo547ndf16V+LtHg4MR6n/afv9Eh35oHd7bfuRyfLpvNGdK//2g26h6mX/rjP7SNgnMiVcFE4ID1Odve/kyHB0eHi4lfKr3SdUu8/F+W2l9h0Pf0c2xMO//aBbVIg3ulBnvgOxj298+J3wonCQ6ux9gYeFF4afCvsqv9r9hbXfp5w3eTieffRVnui+U4h3YSEeevt2nVk/4r2C+f6C8HL6H9XZfwfB+8D54aBwb+XX9PcUbde1at+LhspPKb8FqoN9obtcdbJv15l9Uex7Gh3OD78R9ledvY/qk+GI8AthT+VXu4+zdt+W8+up9h0Pf+TrePMLuhGFdtHbt9dveX9g/n+LnhueS/R+zxijfqPt/uK27zO1/cR4+XGe6G6Rf/tyvViPYT1lma7LcaqX120m6r5su9+v7fpQ7f01Wn6cJ7pl8m9ffo5ZT2Q98Lvh1zW+MX6u37+VeKwXfjn8vOYDbfeltl3vrB3XvyufzhvdFPm3H3RfV73s33VmfZ33T94LLwuXhmerzv57DN4bjw0vCvdSfk1/14Gudt2/9v35bPkp5XeZ6mBf6JaqTvbt5595IPO4O0PeT3j/Qe/54iVh6b2oaf9623lp7fvYxfLjPNHdKf/25Xox/jEuLQlZRx2oenmcHB+W1mWb/q6i7Xhcux48XH6cJ7ol8m9ffo753sh3xavC5SHrnay7cp6/T54STgpL67JNf6eIrvZ7aO168FXy6bzRjZV/+0G3XPWyf9eZfV3s27owvCNkffMQ1dn7wA4Op4Sl9dWmv1NEV7vvrHZd1/4OLsS7o6CbIt101cm+vQ7Gvk72bc4Ibw1vCKfio2vD870f9MRwbHh2eHTYdj8zutp9qM5zV7XvePg9sSEedbAfdLcW4o2V7gbV13Vy/3yg/JDPXSHfZdF73zh5Tg33Vz61+85rvyvX1n+EfJTyu0u+7cf3M/to2Lc1MpwbLg7/NWQ/Ded7P9gB4bBwXPjZsJ/yrd1fVrvfxz4OKMSzn37KE93cQrxhhXjUy77RLVZ9XSf36+wbYd/H7eHN4aiQfY6c530mE8KR4d8Az8l5oHicnZt51Fd1ncd5HsAFN0wENREzU9xQ3BUXNMUlBBIhmFwAAUXHJtBQs1wQWUTFMw1qCjUOhqBNNS7UoKIgWCmIW6WkJJZjbmRnJjUtm3Pq/XrOeV72Pffe/Of9yH3fz+fzft/7vd/1d0TnDn/9b59gp79Bh/4tf8OzW9pf7yLehJb2fK4fIN6kQrwjxLu3pX1c4ny9EO/O4MRCPK4TlzjwNwlvo+CA8IYFpwQfIE9wTEv7+7omXq/gwOA1wX7BvVUfecjrOPAGKC9xuhbiUffAQrwx0lOqb6L0Ww+8Bwp54W8a3sbBgeGNCk4Nzg0uCV4cPKul/f3dE3fP4KDg+ODU4DHBPVTvQMXlenfxqA++88JznXsov+Ohd1BFPHywHnhzC/HGi7dE/tontwPeo+HBy4L3BBfreXMf79nOweODXwteqfZBfeQhr+M0fb8vU/2uB9490ud64U2R7pKOxfLJunl/878dhuq94bk/GLy9pT2/p95n3odpwfNVD3HJ4/vh3V7gOV7d9/xB6XGdzgvfOvxenqo6uf+h4OTgaL2XO3b++7qmB/sH91J95CGv48A7VXmJs+M/6PNo6SnVN1n6rQfeQ/LL+u3zYPXX9LdL9b0ZJZ+313iC/niGvtP+3g1WPK5vLx71wHe+pt/ZuuOSpfLBuuBNlU/WjU/wzwjv4eCs4Jkt7Xm75/6ZwWHB3sp/hu7n+u4FHnlnFnhnqq5S3lmFeMMKusfiT/CR4Djp7pP7Tw1eG9xX+cfqfq73EY988B0fnuvZV/nNI67rtO53w9uvNfzg0FbFzf0f8B1JoJ4btecRh7i+r+07VuCV4lEXeR3PdRMHvr8nHybvkeFPDA4LDgpu3dr+vpX0m/mHfsFewe2Cv1R95CMe11eKRz3wnQ/e1qqzlNf6qNfxrHs76Wobf8unXvLBPv8pOo4O/6zgmcEDgtvK58eiY9P8wx7B3sE/5/qvpJd8xOP6Y+JRD3zng7et6izltR54vRXPPqDLee1Tb/ngcdufo+Ow8M8InhPs1tqe/+P80THxdg/2Da6TPuITh+s/Fo/88J0HnusiXl/xrIc6Hc96+0qX/Xo/9e0U/rnBC4Iny6/l+eO3wf0T95BgN9VDXPL4fnhcJx9xlovnOsnveK6/m+qEZ71c37/g13uMM8I/OzgqeLj8WkZ/k3j7BPekDtVDfOJwfZn0kR++87SNt1RXJ+dXPPRQp+NZ757S5fWETuFtpfec9/O84Njgga3t738yul4Iun0cGOwT/Eg+kZc6HA9eJ+UnzpPidZMe19W0XVs3efuIZ5/6SL/zwuc6ed0vfZD357jwTw9+hfYV/JT6pRWpc8v8w27Bo4N/yvU35Qv5iMf1FeJRD3zng/cp1VnKaz3wjlY8+4Au57VPR8sHt4OW8AYHxwS/Gjwt+PngDmoHTzDvSvy9g8cFdwp+Mvgb6W9RXK4/IR71wXdeeDuo3lJe66Vux7P+T0oXPPu1k3xoW0eVv8fJN7eDVvIGTwxeEvxysL/awarofTX4iVw4Nnh4sIvqIw95HQdeq/ISZ5V4J6p+1wPPOrqoTsdDP3ocz/4cLv32+Y9pzyeEPzl4WbBf8CD5/Gj0bJ1/6B88Ptg5+Bf5Qj7icf1R8agHvvPBO0h1lvJaT2fV67z4gC7ntU/Hywd/b7qE94ngkODo4CT19/T/3P9c9LwY3CF59goeoX7f4wTyUofjweui/MR5Trwh0uO6mo5j7Ae6HM9+HSEf2tarCnnhexz5l7xnR4V/YfBL9O8aR/40f2ySeEcGDw2+L7+ITxyu/1Q88sN3Hniui3iHimc91Ol41nuodPm78VHqY17JfPBS9df039z3k9Tpeehn1V+7fycPeR0H3kcaPxHnJ+LVnRfXHX9Y927S5bzwud674POW4R0SPD84gecU3EY+Px89LfmHg4IHBFuDL8mXLRWP68+LRz3wnQ/eNqqzlNf6qNfxrLtVuuDZpwPkg33uEB7rTKwjXaG6DpHPj0eH16VOUj7r6KB4XH9cvlAPfOdr6l/d9TTrP6nAsz8HSb+/s5vQXwbHBb/Gd1rf2Wfyx1aJt29wQPA9+bWJ4nD9GfHID9954Lku4g0Qz3qo0/Gsd4B02a+OfCeCVwdZVzpMfq3OH1sk3inB0vpUR8Xh+mr5RX74ztN0Xcx6qNPxrHd36XI73hT/g18Mjg8yD2EexH3PRs8fg5/Jhf00T/E8iTzkdRx4myovcZ4V74uq3/U0nceNlw/WZZ7j7VfwubO+w3xnr1Q7OF4+r4kef7dPVjtwuyEPeR0HXmflJc4a+Vy3H6nbrq17X+lyXvgnK6/nDduFt2OQdUPW+2YGLw4e29r+/lei+3/QnzysEw4NHhPcXPWSlzo+Fk91kp84r4h3uPS4rqbrpNa9ufQ4Hn4NLcSzn8fIJ7eDjeEF/yU4Nch+Cfsr3Pd0dG+WfzgsOChY2n/ZWPG4/rR8ph74ztd038f6qNfxrHsP6YJnnwbJB7eDHuGxHsV6003B6xinBHdRO1gf/V7HGhUcHtwm+Jb87KG4XF8vHvXBd154u6jeUl7r2kb1Nl2vs2+jCjz7Olx+uR1sHx7zUeaR04Ps67BfxH2/jl7PXz8fLO0nba94XP+1eNQD3/ma7mPVnXdb9/7S5XjwuX5owefNw2N/gv2HGUHOG+wnn3+eOr2fcWqwdH5hc8Xj+s/Fox74zgev7rmJuvsw1r2jdDleG3+j9vE87t4svK8HLw9yzoDzC/B/lj9OSLwTg6VzDZspDtd/1vnv86jjhAKv7nkK6+ineuFZN9fJ7+9zz/D2DjJfYp5zrfqPtv4p978WPe8GPc86Tf2D+x3yUofjweup/MR5Tbx9pMd1NZ0f1u0/7dNh0u+88LlOXn83ttA4ifHNrCDrf6wXct8vosfjqmHB0nriForH9V/IP+qB73xN1zHrjget+0jpcjz4wxTPPncNj/0c9mGuD/5z8HPyeW10e//nC8GDg9uqPvKQ13HgdVVe4qzV86i7H2Ud26pOeNZ9sHQ5L/wvKK993pV+Nci+7zXBacFT5POG6PV+8+DgkGAP1Uce8joOvF2VlzgbxKu7/20dPVSn46EfPY5nf4ZIv33eWc+Z53hRcDjPVT6/ET1+L44K7gxR9e2seFx/Q/5RD3zng3ew6izlrfs+D5d+63E88w4u+Nw9PMb5jLtvCbLvNUQ+vxzdnheMCZb20chDXseB1115ifOynkfdeUrdfT7r3ku6nBf+GOW1z73UnmgH3wyyr3uCfH49et3+zg6W9ol7KR7XX5d/1APf+eDV3Z+u+92w7v7S5Xjwz1Y8jwf7hsd5P87z3Rq8Ocj6LuvB3P9h9Puc4Njg6GBp3biv4nL9Q/lOffCdt+l6dd1zjvZjbIFnn06Rfnj2dbT88vyGcxCcX7gtyPkRzpvA93mJccHSOZR+isP1zuLVPZdR9/yLdRyrep0X/jjl/djvXcMbGBwRvCo4JThS342u+aN7cJfg54IDg59WfeQhr+PAG6C8xOkq3gjV73rgXSV9rhfeSOku6bA/AxXP7yXzeObpNwRnB/kdBXzP90cERwb9u42q32M0XVdwXT2V3/HQM6IQz3pHStfHfn8aHvN55ut3Bv89yD5tWz+YPzz/nxg8L3iS6qv6nUXT/eO66xHWNbHAs96TpAee/TlP+v1esm7K+cW5wUVB1kvh+xzk+OCFwVGqp+45yrrrt65zfCGe6x+lOuFZ74XS5feScy7sA7DO/93gXUHOwXCff0/CvsDk4EVBn6up+l0KvKrzN033Mazjs6rT8dA/uRDP/lwk/R5nsV/L/u2c4Lzgt/Ue8F5wv/d5zwqeE5yg5+z3p2rfGF7V+V94c6THdTV9v+fJF+uDZ5/GS7/jwZ+geG4Hp+v94Ln+MMh8nPk79/n8GO/BVcHS/L7qHDy8uufV6q4r1G0H1j1YuhwP/lWKZ585H8I4mXHwf/J9D54jn32ehHHzxUH/XoP6qn7XBa/q/Aq8qt+JwLOeA1Vv03mDfbpYPPvMPjrnajln+/3g/cGZ8tm/S+Ic7qXBK4JDVV/V75vg1d3frzoXbB66Li3wrHeo9MCzP1dIv8cbrHuwrrFU9VAffK+PzFB81133HHXddZi6flnPjEI8671UutwPsr9Hu+B9Xh5cHGR8zXic+/37LdrBdcErg6Vxe93fg1XtQzZt53XnFdY/QrqcF9+uK+S1r1fKLz8f1kNZ3/9WcGHw9uCNjHv0fLxvcG5wUvD84D8Fj1K9VeuxTfcrLlK9pbzWe24h3o3ywXrg2bdJ8gPe7QXe+YXnw7k0zvEyf2J+tDL4EM9bz8fnqz3vmh2cHvS5uKrz2vCqzs/BqzqX3HS+aN0nS4/j4dfsQjz7OV0+ud8dp/zc90CQfWD2hbnP5xDJc03Q+8bUV3VOGV7dc49V+9VNfbbu06TL8eBfo3j2mfM6nMd5NLgiyDrrBfLZ53uuD94QLK3vVv3eHV7d80R115Wt7/pCPOseK13w7NMN8sE+c+6J/Xf2159UXdPls3+XxH78LcpnHVW/b4JXdR4LXt3zA3V9tv5bCvHsz/XSb585R0I7oR2sCrLeMFU++9wJ7eamYGn9oupcJ7y651zqrpvU/R5Y92Tpcjz4Nyme+0/OL7DvwL7C94I/0jiAcQH3+3e67EdcEpyift7jh6rf/cKrOmfRdB+l7vjGflxSiGefzpV+ePZ1ivzy82Ef4l+D84N3B+8IfoN4ej7sV5wevCD4leCXgmcEB6reqn0QeNQH33nhTVG9pbzzpdv1w/uGfLAeeHfLP/sA7w75a5/8neKcFfNo5slP6bvId5L7fD6fefWt+i76O1p1zh9e1fmvpusAdb/z1n9rIZ79uUX67TP7/Ozjv6B2STu9TD77XMB8tTfvn1Jf1e/k4dU9h1C1b+t46JtfiFf3u2SfLpEP+OR9PObHDwbZ12vbl82NzJ+nBb1/WLUv2HSe73pGKr/jwZ+meNbNueHVQfbZLpduzhHfHCzt51WdQy7lvbnAq7uP6Ponql73L6xns179cnCt3kPeS87TcL/Xwe8K3qH3zOduqLfqXF/T9feq8z5N25l9uauQ137Nlw/w7O8d8q1LeHz/OCfGPif7mMuCLwZfCrL+yHolcfw7GPZBZwUXBO8MltY3q35fA6/qfBu8uvu4dddf7c+sQjz7NUP64dnnBfINnp/DnfLV/Rn7F8xPmX+uD7JOybom9/l8FPPVu4Oldc+qc1Z191Wazq/rrsta93XS5bzw71Ze+8y+54LgfcElwf8Ofls+sy/65eDlwanBq4NN91nhUQ9854Pn+iYoP7z7pNN1w1siH6zLPPJfLZ59Zt7DvOaR4MPBHwQXymfPk64Nzgx+NThJ9dVdT647L1uoOkt5fyBdrtN58eHaQl77NFM+2Oe5eh94Pk/ou7dIPvtcAM9zjr5n/k7WPV9Qdc6m6ftc9ztu/XMK8ezPLOm3z6yHM45iXNWxY3jBlfLZ57EYd60OPhWcrfqqznU1XaevGgfCs47ZqtPx0L+6EM/+PCX9Hn9yXoJ1LdateuT+XYKMmxiPcb/PGbHetT74VrA0bqs6twSv6lxH03W6uuNK+7G+EM8+3SX98OzrW/LL7YD2RX/weHBN8Gm1P+5zf/FvwW8Gb1P7q9vvNG33j6t+1wNvjfS5XnjWO0d6HA/+bYpnn/n+0x88G/xl8JngY/LZ/cW84HeCc4M3Nux34D2svMSZWYhH3fMK8R6TnlJ91j1XuuDZp+/IB39vWAdhnsY87A3Vjx76ce73+gnzt/uUt9TfV63/1l23+UfHGVXPxz7Mk76m8137e594bges2zAPYJzfLd+rrkHWdbjP5ziYF6wLrg02XSeCV3VuBJ7rm6b8Tec71r+uwLM/a6Xf6wqcT2L+y7y1NffvFvwM/Xius75LHJ9vYt67KvhO8HfB0npw1TkzeFXnq5quQ9ddB7APt0qX4+HjqkI8+/yOfIPn5/A7+er2w/iW/on+51fBt4Ivqv14PEx/tSi4OLhA9VWNq5uuo9TtX61rUYFnvQukB579WSz99pn+/fnga8Hfqq6n5TP9/38E/yt4j/I1HU/Aox74ztfUv9ek03XDs+5F0mUeca3f/TX72ZyHaZtvpT3sGmRcy3i5bX07cX1OiXnJhmBpXF11Dgde1b47vKrzU03nZXXnB/ZrQyGe/Vwvn9wOGJ8x/no9+GbwleBzagcez90bvD/43eC3VN8zisf1ueLVHT8+pzpLea3v3kK8V6TfeuDZp/vlg/trzs2wX0o/RL/w6SDjAMYNrJcSx+du3I+9rXGD11epv+rcFLyqcz9113XhVe0bN+2v646v7O86+eW88N9WXrcfxtmMj98Lvqv3jfeP+zwuXxZ8RO9R0/lS03lA3XZhPfeqXufFh2WFvPbpEflgn9eF95vgO8E/BH8ffFU+L8wf3wsuCT4cfCD4fdVHHvI6Drx1ykucheK9o/pdD7xXpadU3x/kg3XB+718sm77TP9PP/928P3g/2mcxX0eL/wwuDy4NOhxW91xR9X4Dt7bqt/1wLOOxarT8dC/vBDP/iyVfvtMO+L9/zD4QXCD+hfuc7tbGVwR/JH64br9VdN2/qbqLOXdIF2u03nxYWUhr31aIR/s84t6zjyfrfJ9Zx73knz2PIPn+UKwNC+s2kduOq+pOx+t+z5b/wsFnv1ZJf32mXbyv8GW3Ncp2Dn4vnymHT0UfCL4ZHCN2hH1kYe8jtO0/VIvcV0PPOtYrjrhoZu41mUecdeI9/9wSEIJeJydm2eUVdUdxRGc0RlkXmw0iUuxIoooAhaULghIVSEaEWwRAaMGkN57R0zggyGiLgt1GHrvimsJMcYlNhCVJC5jiiYxCij5wN6z1v3JyT33+WVfuPvs/97/e095j2dRhRP/nSb8oOIJPCSsXekEXi08W/hf3f+iYnL8i4UncJHwS+F3wgPC7cJVwlMrJOvaB/XM+wD1rfMiePZvXfoyzzrOFfLH/NuRyzz26wD6QH/mfwd/p4unP1Y4orpHhVU0rkR4mvBYxeS4XbrYLdwvfE/4B+Fr8Oc6rksd83zfda2zK6Bn3/sDetZxnpC/05Cfecxjn95DH9jn71T/B2GRxp0lLBYeR5936mKP8I/Cj4TvCN+AP9dxXeqY5/uua52d4NmvdenHPOs4T8ifc1uXucwrRp+Yu0g8rxffYN55vtQQVhf6+R3FerMN64nn2WfCT/Gc+Z65rn1Qz7xvMO+ssw282PUhdh4w/37kYl337bNAXfb1U/SL8+Df8vmtsEDjqgrPFOYqJcdt0cUO4e+Fh4QfCt+HP9dxXeqY5/uua50t4NmvdemHPOc6FOAx7/vIYx778yHycx6cKt4ZwguEFwprwp/9evw+6b4r/EL4V+Fh1GeuU6Hr+/vAsz/zWTdrPy9Abvo3j/kPIZd57Ndh9IE812e/OA88/zxvLhNeLjwP+4vHcb5+Jfxa+Cfsw7H7Vdb1oQQ+Q3WZ76uA3nnIzzzmsU9fow/s85l4zn6O9YWNhNegz5xffu5HTNBEOZpxnpp3TYBHvdj3lLmOBHjM7RxHwGNfjiI3+3yueD8V1hVeJ7xSeD76/LEu/iL8j/AH4TfCz+HPdVyXOuadi7rW+Ri8uvBPP+adjzwhf9ehD8xl3pXoE3N7PS4Q+jl7vaknbIDnbz7Xq2+F3+N9zrrexb5v9eCXPsxrgDz0SR7rmsd9sCL2V883v9ethNcKL8U++CbOFZynJSIe05//Cb+uax/UM68i6lvnTfBizwux6wtzu+6xgJ77VRJY/9jPY+gT32fvDz5HNhbegH3DfJ4vT5FgJeFX8JN2Ps26T9Gn61OP/q1nn+Yxr++fElhnfS735/vrhR3gyz49jt8XVJR+VdRjjtjPAbHfT8T2j/nsl3rMfQpymcc++b51uW5chufSXNhMeKOwDs4jHs/nXVlYbF/Cf+H8FnvOyfqeXQ6/obp1kI8+Wdd9qYx5aN6N6Bvzm8f+FqNvnAde/70fNBW2ELbEOcfjfrRfSP8MYRU/QPhL23eynq+awj/9mMccFeDTvBboA3ORZ90q4LHPDcVrImwjbC9sK7wZfT6ui0Lpnik8V3iW9wP4cx3XpY55DVHXOsfR5zbwTz/m3Yw8IX/t0QfmMq8t+sTc7PM1eM5+Pp2EnbH/ehzP5X6eNYQ1hSXwl3a+z7rvx76nzFUjwGPeEuQxj/2pifw8b3h98Xpzu7CjsDXOG1yHqgmrC3MZ1zHzmqGedYoDevZZLaDXGjlC/pi3OnJxH/S+6n2zh/Bn8GWf3hc8nvtxbeFFqBvaP9LOR1nPAbH7Vmzf2ZfagbrsVzX0wTz29yL0je9zJfHGCMcKL/Y6gfd5r+Ztewl1EP5df/8W5nUl6Pj+3gDPPqxPXiH8heoyh3kd0C/m9n3X5zrr/a+dsIuwO9Ylr1Me5/3xHOF5wgux3oT25dB+a579mM96WdfPLshJ3+Yxdw3kop75F0KP7+VPXNfvsXCScDLeyw/U6IPCvwm7SLgr/FjXdTjevMkBHvUugl/6IM857I885nQ987nOel3wvL9P2Et4t3Wwfns815M6wiuEFwtrYf+K3ReyrmMd4TdUtyvy0Sfrui91AnXvRt+Y3zz29wr0jeuG54ff/97CB4UP4BzicZxPdYX1hFflea7JOn/prybqU8/56gb0mL8e8pnH/lyF/Oyz15m7hD2F98NXd/TZ69AFwsuFV8IXc7iO61Indv0zryf800/WPt+PPjAXedQzr1g897sa9lfvn78Wjhf6exN/H+Pfl1jnEz0A7s/3CTsK+f0Nfy9TDfq+/wl49ms+65uX9juYrOeM2O+j2LeK6APrut/uF+vyeXREf7mP+HtXf27yfPf8GyicIhyHfYTf13KdaCrsJrwdftO+/zVvXIBHvdjPgbHrG/vQNMBjn7ohv3ns4+3oD5+Pzw+XCC9FH6zzG5wzPN7njH/g3xvYv144b9iv69oH9bKecy5FHvrK+u8Mse8F+9Qr8D6yj13QHz4fz1vPt2nCp4SPCv05rQOeD+f7ncLmwuuEoc+Jad9TZ11nYj+fMldt+DWPfbgO+cxj35qjH8xh/p3I4b76c0IP1O/n9VPoc6L5zNEI57ysn7+z9iv23MocdeCXdc1vhLo8T90H/mPC/sKHPH9wnmL964WNhVcLr4C/tHN11ry94DNU9yHkok/WdR+uD9RlnxqjD+yzz10+h/UR9hX+Uvgg+sxzWgNhQ+ENOC/HnveyntP7wD/9mMcc9eDTvL7oA3ORZ90bwOP6/ADqe9wg4WjhROzzHs/PH67XTNhO2Dmw36d9nsl6zojtJ3M2C/CYuynymMd+tUMfzGM/O6NPXJ/9PAcIB8O3c5jv53yLsAV8hN6r0PtinuubzzpZ+zoYueiXPOq1CPTL64vXm6HCIcLH0S+uQ62ELYU3ZlzHzOuPetZpHNCzz1YBvceRI+SPeVsiF+e/9z+fK6YLJ8CXfXq993ieV+4SdkLd0L6Qtv9mPSdl3Y/S+s6+3BWoy361Qh/MY387oW/cB/3eex6MEk4VzsC643GcJ7cJ7xB2x7oTO9+yrnej4J9+zJuKfPRrHvO2Qx7qmd8depwHQ/D8/HzmCp8RzhQOwzzgPPNzvVfYU9hD2DrjvDVvCOpbpyV4se/jMOQK+WM/7g3ozUS/mNs89rUn+sV5MBrPc57wOeEC7Ksex/ejt/BR4SOB/Txtn876PtJfZ9SnnvP1Dugx/6PIZx778wjys8+eN08LnxX+Fr5moM+eVz8XPiz8BXxlnafm2Y/5rJe1f88iJ32bx9y9kYs86zI/+zwQ74Ofz2vC14VT0GeeP/08ZwvnCLvBX+w5NvZ7utj3mTm6wSf1nH92QI/9mYP8Xo99vvO65X33d8LnsZ6Zz/24j7Af1qfY/Tzr+kmffQJ69H8vfJrHvP2Qi++lzzv+/mijcBN82afH8fuoCcKJqMccsd9rxZ7D6HtCQC+2z8zdB7nMY58mog/s81w8lxeELwrnY3/0OD7n/sLHhPfjvBG732Z9r56Bz1Dd+chFn6zrPvQP1GWfHkMf2Gev216fXxUuEi7GPlr+/RPW718JBwgHYh/Nul/E7t+vwj/9mMccj8KneYvQB+Yiz7oDwWOfF4r3knC5cI2wVPgy+txXeo8LhwhHC4cKn4A/13Fd6pi3EHWt0xe85fBPP+a9jDwhf2vQB+YyrxR9Ym72eQGes5/PSuFu7KMex3Ofn+cI4Szso7Hnx6z7d+x7ylwjAjzmnoVc5rEvs5GbffY6s0S4VrhKuBTrkMd5HRokHCMcKXwK63XsukaefQ0K8F6Ez1Bd5hsD/+YtRX7mMY99Gok+sM/eV71vbkY+530efeY+PAm+Q/tH2nko676fdd9Ke27MPwj56M/8SfDHPns9LxOuFq7DPFuMPnu9Hy4cJRyLeRbaZ0L7h3n2Yz7rZV0PViMnfZvH3COQi3rmj4WeoPzzg38/u164Qejfnfh3Kub7d7XjhOOFod+vpP0+lzz7GBfgxf5uhjnug1/zmHs88rFf46HrcT5PT0O/+Hsd64fO+Wn/Hm5e2u+Csn6+iO0X804Az/OQ67Xn/Ras3+Xfz2LdmIx1OOv6H7su0c8Y1Kee+ZOhx9yroOtxW5Gb+411p2Tcp1jXdawzMs/c9D0FPOb2+rNTuAvrUfn37Bo/Qzgzz/XMPNczn/rm0c9Y1Kee+TOhx9wroetxu5Gb67Z1Z6F+7Hofe56MzU3fs8DjeujfYfn7Mn/PtUfo31+Zz9/H+fuwp4W94Cft93Xmxf4eLPb7PfrvBZ/UM/9p6LFfk6DrcW94XUG/+Hs1688V8v9jSPv/DsxL+12cefTVFfWz9ot554LHfnXVxRDhFuFW4dSCJL+W/qGspXB37gRO0Z/vKEr6ob7H1QLPdcyvFdCjT9dvCR79W2cKeMw7Bbm4DvUTbzN82Jd5jaSzK/f/fXqcdRsVnZzHutZtlGd/6N886/I9uUkXE4Sb4Kcf3pMC1esk3Al9+vZ41/F48ujD+gV59ot57LMTeMxrvZ2BfnXQxWjhjFxSZwL6VVX12gl3QJ9+qO9xVQP5zK+K52Iefbp+uzz7xbw7oct5NVy86bnkePsy71bV2Z7i0+Ose2vRyXmsa91b8+wP/e+ALt+T1roYJJyWS+oMx3uSU71mwm0pvqnvcblAH8z3ferRp+s3y7OvzLsduuxXK10M8PqeS+oMQr9KVO8W4dYU39T3uJJAH8wvwXMxjz5d/5Y8+8q826DLfnXSxUPe33JJnQHoVw3Vu1q4JcU39T2uRqAP5tfAczGPPl3/6jz7yrxboct16B7pTva5Jpf0Zd4lqrM5xafHWfeSopPzWNe6l+TZH/rfAl2+J3foYoxwUi6pcw/ek/NVr71wU4pvj3cdjyePPqx/fp79Yh77bA8e824Gn/1qZl3hxFxSZwz6Vax6XYQbU/x4vOsUF52cRx/WL863D8hjn13AY95N4HNe9fW5J4fxmFcNVWdDSn2Ps27DopPzWNe6DfPMTf8boRvKPVE4PpfUYe7OwvXQDemZzzyxuenLdTuDR98bwOf8aG5d4bhcUmci5kdl1esoXJfih/oeVzmQz/zK6HN5Pvh0/Y559ot510OX78nD0h2bw3jMj/qqszbFp8dZt37RyXmsa936efaH/tdBl+9JR6/jXvdzSZ2H8Z5UV72uwjUpvj3edTyePPqwfvU8+8U89tkVPOZdCz771UQXT/jzn/cb71/oV6Hq3SRcneKH+h5XGMhnfiGei3n06fo35dkv5l0DXc4r1x8hHJVL6pR/r6A6bYSroBvSa4P+Zs1NX67bBjz6Xg0+35MGumgrHJlL6ozAe/K9/oH4LNVdmeKH+h5nHeYz3/epR5+uf1ae/WLeVdBlv67VxTA/31xSpy36dUw5WqtuWYpvj3edY6efnEcf1j+Gvsb2i3nsszX7irwrwee86izd4X6fcsl65tVUnRUp9T3Ouh5HHutat2aeuem/DLp8T27TRX8/p1xSpzPek7NVr7GwNMW3x7uOx5NHH9Y/O89+MY99NmZfkXcF+OxXQ108KRzq9ySXrGv+cb3nTVR3eYofj3cdjyePPqx/HPMqtg/MY59NwGPeUvDZr3a66CEckkvqPIl+naN6tYXLUvxQ3+POCeQz3/epR5+uXzvPfjHvcuiyX7P19+/qL44Itwnn5JL8yar3nHCXcKrwNez31reO708uOjnPPqxPHn1Zbyp4zDEVfs1j7l3Ix37NUr19+osfCpI6s9GvSdKZL9wDfeaz/mz0aVKAZx/zA7zYvjLPHvg2j3mfQy7uczNV//2CZJ1ZeE8mavwLqMs81vN4358Y4LnuCwFebB/pfz788j3ZqIvXhQcLkjoz8Z5MkM4c4SvQp++N0PH9CQGefcwJ8GL7xTyvwLd5zPsCcrFfG3SxV1ipMFnPOcwfL515wr3wwXwboOP74wM8+5gX4MX2lTnmwK95zL0X+div9bo4KqzicQXJHOaPk85u4X7oM9966Pj+uADPPnYHeLF9ZY558Gsec+9HPvZrnS52eD8uTOqsR7/GSme68CD0mW8ddHx/bIBnH9MDvNi+Ms9B+DaPeXcjF9ftteJ9Dr/2X/79i8aXoS7zrMV43x8T4LluWYAX20f6nw6/zL1GvM/gYy1yj9b4pdCjzzUY7/ujAzzXXRrgxfaH/svgl/NjtS7eEH4LP/Zn/ijpzBXugD59r4aO748K8OxjboAX2y/m2QHf5jHvUuRiv1bpYr/w9MJkvdXo10jpLBS+DR/Mtwo6vj8ywLOPhQFebF+ZYy78msfcbyMf+7VSF58Kz/C6XZDMYf4I6SwRvgt95lsJHd8fEeDZx5IAL7avzLEQfs1j7neRj+tQmfh/hl/7L//+ReNLocc8ZRjv+8MDPNctDfBi+0j/S+CX78kKXWx3zsKkThnek2HSmSbcB336XgEd3x8W4NnHtAAvtl/Msw++zWPeUuRiv0p18Y6wsDBZbwX6NVQ6C4RvwQfzlULH94cGePaxIMCL7StzTINf85j7LeTjvFou/kfwa//l36No/EvQY57lGO/7QwI8130pwIvtI/0vgF++J8t0cUhYszCpsxzvyWDpLBIehj59L4OO7w8O8OxjUYAX2y/meAl+zWPuw8jHfi3VxZfCswuTOsvQr6eks0Z4APrMtxQ6vv9UgGcfawK82L4yxyL4NY+5DyDfj/4/KvE/gV/7N2+Qxi+GHvMswXjfHxTgue7iAM86/wOVwWp0eJydnXmwleV9x93uhavYK1i1HScuERAmjopbhYCMVgFTzUzGAi6AUVQiO7jgVtMkjY4TUQL3qsgqsms0CtbUREVto0anqRIdY1xiUqeKcU1rmrh1pn4/Z+Z8vE/O68s/v5f7fJ7v7/v9nfecezgPF37Xtt3///rnjk/rvNSdPi3bvZL134m7LbVXuCxvd1su/jN17/ZmndvbmvmLonNH6qvSv1h+bpMO6xcVOHzcUeDQwV+pr3PcJr9wzv2q8uXLDX5j+CfkF/9wF2Z/t/ScZ6P2s35hgaNvd4GrOkf7v0N+fZ9syMXW1L9ub9bZqPvkgugsS/2t9O17g3RYv6DA4WNZgas6L+foll845/6t8nle63PxZuof5XuD5jU3OvemPiJ951svHdbnFjh83Fvgqs7VOZbJL5xzP6J85N4xdZ184pv1Odpv/+u0j/U5Bc7zMNdqbn5dODXcOalrUy/tbOa+mP0Hp87m9UGc9eC/2NEzRx90zNnXbPmAs2/0ZhdyX5L1/86+91KZM9wPwj0QnZ8U5o4e+1n/QWfPHH0fKHD2M0f94eyf9QcK9+tF+cIazZX1kdk3S48z/bwfbmTh8YAfWdCzj9nq3zscj9+QcKenrpYf+p3d1rzvgwj15/t+Z8/+D5I/92M/enD0g2fdevaNj/6FOaN7UGHOVR8Pz2mW5pDfNr4fzMvX/yP8u6l7ZqC7pXL/cV+z//b8/uYI/zj116nP6z71/U9/dFm/vcDhk37mqj7vnBffN2uensevlRPOc3pA+eE81+c1Lz+PL1Zu5sD6TPn2PNg/T3Od2dEz5/maa/U4+PWX58FZqbfqeQHH8+JLqTN035b04P28qvr8s68Z8gFn3+jBO/dFWf+f8G+nXqw8G/P7B6PzL4W5o3exHr+NnT1z9H2wwNnPTPWHs3/WHyzcr2fy/ji6zI31wdk3XY8z/bwfbnDh8YAfXNCzjxnq7/fFp+ViCu9bO5t16Ad/QHSGpE6Tvn2znz4HFDj7QP+AmvNynmnyDee805XL8xqWi5m8r+1s1pmiee0UnaNTp0rffthPn50KnH2gv1PNOTjPVPmGc95pyuV5HZeLb6auUJ+Zmlef6JyYer707Yf99OlT4OwD/T415+A858s3nPNOVS6/jk4Iv1z69IMbmP3fkJ77sw/dgQXOfdEdWDO3/Z8vv37/e0S4canL5Ad/R+n978cR2i+6U9QH/9vJHzr0RcecfdHnY71Ptr/tCvNzPvzuV/Px8Jy+oTn4/qL/7NSl8gOHn2Gp50m3pDeskKdqbvs6Tz7g7HuKfPp16Bjuw9Ql6kNf+N7ROTx1Veef92N99vUu5IPvXdCzT/ofXnNeznuecnlef5OLy3jfKz/na17bR+/41Fs6/7xv9tNn+46eOftAf/ua83IefB4vznnRg/fzalK4xdKnH9yg9FkpPfdnH7qDOnrm3BfdQTVz2z/cyha5Z6XeJD/OPTR1hXRLevDOUzW3fdF3qDj7Rm9F4fkxIhdX8nzobNahL3yv9BuTulz69sN++vTq6JmzD/R71ZyD8+BzjJ9vyrtCvOf1t7k4he9Tnc06V2peu6bfF1KXtfBjffbtWsgHv6seFzj7pP8Xas7LeZdL1/MamYvxfH/rbNY5RfPqSL/9U5e28M1++nR09MzZB/odNeflPPjcX5zzLhPv1yF0p/L9jT+P6fWFPkekLpFuSe8Izffz5rEv+h4hzr6Xivd9MioX3049l/cp/HlD98lu6XdS6s0t/LCfPrt19MzZB/q71ZyD8+DzJHHOu0S85zU6FxekntPZrPNtzatv+o1IXdzCj/XZ17eQD76vHpfG5xPySf8RNeflvDdL1/P6u1xMTJ3c2axzgea1R/odmHpTC9/WZ98ehTnA76HHBc4+6X9gzbk672Lp+nWI/vNSz+5s1oHDz7GpN0q3pHes5vt5c9sXfY8VZ983ifd9cnQuvpZ6VmezzjzdJzuk396pN7TwY3327VDIB7+D5gxnn/Tfu+a8nPdG6XpeQ3PxndSvdzbrfE3z2jH9Tk7tbuGb/fTZsaNnzj7Q37HmvJwHnyeLc94bxHteJ/P+IvXMzmad72hee6XfYaldLfxYn317FfLB76XHpfF+Tz7pf1jNeTlvt3T9OkT/S1IndTbrwOHnuNRF0i3pHaf5ft7c9kXf48TZd5d43ydjc3FN6vfU5xLdJ/um3ympYzUH+2E/ffbt6JmzD/T3rTkH5xkr33DOix6857UqF9v4Qm4kzsE4X2N5Q36/OXo/Sy2du62SDusbChw+0DdX9bzPefC5WfNy3geVy/O6JRfP8z6kvbnfKt1f6+NrdfRelg/nu0U6rK8vcPhA31zVuToPPldrXs67Wbk8r5W5eDJ1Z/4eQFtzDvh1fD+I3i/kw/lWSof1dQUOH+ibqzpX58HnDZqX865WLr9uz0mfV+UX/3Brw92pvs6DHvtZX1vg6IuuuapztH84dH3+Mzv7P+F+yEI//h5wW7NP9q3J7x+P7s9TX1A/56DfHM1jTYHDF33MVZ2f89wpv3CeA7keF+c5vaA5+P6aFT+PtDX3mS2fq/P7+err3OjN1vxWFzj6omuu6rztHw5dvw7NzP7X84W+7c06+IO/Nb/fFL1fSd++0Z+l/LcWOHygb67qvJxjvvzCOTfrmwrzmpE+b/E+t71ZZ6bmdW50fpT6ivSdD/2ZmtO5HT1z+EDfXNW5Oscm+YVz7leUz/Oanj5v5AsftjXrzNC8zonOPak/lb7zoT9DczqnwOHjngJXda7O81P5hnPeHymXX4empf+/tjX3ma7Ha3L2X6e+zoMe+1mfXODoe12BqzpH+79Hfn2fTI3uY/nCX7Q360zTfXJ2dBamPid9+0YfHdbPLnD4WFjgqs7LOa6TXzjnfk75PK8bc/Fy6kdtzTpTNa+zeH+b+qj0ne9G6bB+VoHDx4YCV3WuzrFQfuGc+1Hl8/PqBp6n8ov/xucv2b9Aes5zg/az/vUCR98FBa7qHO1/g/z6PunOxVOpHe3NOviDPzM6S1K3St++u6XD+pkFDh9LClzVeTnHAvmFc+6tyud5deXiv1J3aW/W6da8JkXnrtRnpO98XdJhfVKBw8ddBa7qXJ1jifzCOfczyufn1aLw78sv/hufw2f/Fuk5zyLtZ31igaPvlgJXdY72f5f8+j5ZmIunU/8gP4t0n0yIztLUh6Rv3wulw/qEAoePpQWu6ryc5yH5hnPeLcrleX0/Fz9P7Wxv7rdQ8zojOotTfykfzvd96bB+RoHDx+ICV3WuzvNL+YZz3qXK5XktyMWLqTvw59225hzwp0dnXeqT8uF8C6TD+ukFDh/rClzVuTrHYvmFc+4nlc+vQ9eHf05+8Q93Wvavkp7zXK/9rJ9W4Oi7qsBVnaP9r5Nf3yfX5eJnqdvz/rGt2R/8qdHpSn1C+vZ9nXRYP7XA4aOrwFWdl/M8Id9wzrtKuTyv+bn4Vepf8Tl4W3MO+PHRWZP6G/lwvvnSYX18gcPHmgJXda7O0SW/cM79G+Xz8+ra8P8mv/iHG5f910vPea7VftbHFTj6Xl/gqs7R/tfIr++TifnzyjP5Qq/2Zp1rdZ8sDL8iek9J377RR4f1hZ09c/hYUeCqzss5rpdfOOdmnf7k9s/F83PJv29rXvfPM9+vflV//vn3Ba6kB3+/9Pw5Ozw/t8nPZR6Q2r+9WY99/vlrfo7zzdS3avqDa/Xz3nD2d7/6w1X9+VTnf7PAeT5vKb+fV/AnpU5MnSQdeHT23PnTemDqoJ17ztfKjzl8oG/OvtCjP5zz4HNPcc47SLk+8/em8oWZqbO0H479R6cO1Zyq9i/1PbrA2c8g9W98Di3/Q+X3M+cS4S5KvSL1H6QDj87I1FGpo2v6MYePkQXOvoaqP5zzjJJvOOcdrVy+T+AXpi7Sfjj2T0idWPDZqn+p74QCZz+j1b/x5y75nyi/zg2/MvUW7Ydj/9TUaTX7l/pOLXD2M1H94ex/mvx+5u8PhFufemfqD6UDj87c1EtTL6vpxxw+5hY4+5qm/nDOc6l8wznvZcrl+wT+x6k/0X449n839aqCz1b9S32/W+Ds5zL1h7P/q+TX72vgH0x9JPVx/rwgPfahd03q/NRFqV01/ZnD1zUFzv6uUn8455sv/3DOv0j54DyfLuX3/QX/i9RntL/xOpj9y1NXFPK06l/qu7zA2U+X+sPZ/wr59f0F/0Lqy6mvpb4uPfahtzZ1Q+rdqZtq+jOHr7UFzv5WqD+c822Qfzjnv1v54DyfTcrv+wv+/dQ/aD8c+7ekPlTI06p/qe+WAmc/m9S/8Tm7/D8kv76/4D9O/SS1V74h9u7VrMc+9B5LfTz1qdSna/ozh6/HCpz9PaT+cM73uPzDOf9Tytf4c77m87Ty+/6C75e6u/bDsf+F1BcLeVr1L/V9ocDZz9PqD2f/L8qv30fB75G6T+q+0oFH5+XU11Jfr+nHHD5eLnD29aL6wznPa/IN57yvK5fvE/iBqQdqf+N1I/vfSX234LNV/1Lfdwqc/byu/nD2/678Ojf8kNTDtB+O/R+kflizf6nvBwXOft5Vfzj7/1B+nRt+eOoI7Ydr7N/l09prl3r9S33RNWc/6NEfzv5ZR9e54UenjtF+OPb3Te2n/FX7l/r2LXD200v94ey/n/w6N/zpqWdoPxz7+6cOqNm/1Ld/gbOffuoPZ/8D5Ne54c9JPVf7G5+zZv/BqYfU7F/qe3CBs58B6g9n/4fIr7//wU9LnZM6Vzrw6ByZ+uXU4TX9mMPHkQXOvg5Rfzjn+bJ8wznvcOXyfQJ/Werl2g/H/uNTTyj4bNW/1Pf4Amc/w9Ufzv5PkF/fJ/D/mPq91GulA4/OV1LHpo6r6cccPr5S4OzrBPWHc56x8g3nvOOUq3QexnnMm4XzMM5p7tW5Q9V//7nqeZh93CvOjzc85x4DUv8oHXifN72d6n9Pu6qfxuttezNfOtdq9e94wznHI/LrvvBvq6/nBc85yJmph0oH3udIg1P/VNMPXNXzKvtC70/Scw7WB0vPuVmnr+cFz3nJ7NQp0oH3udKw1CGaX1U/cFXPr+xrsPrDOccQ+XVf+GHq6+878JyfXKn9cD53GlOzP1zVcy37Gab+1oMfIz3fJ/Ccn3Sl/pN04H2uNCn1qzX9ND631fxL51f2NUb94Zzjq/LrvvCT1NfzguecZVXqYuk0/p5LdDiPmZ46uaYfuKrnXvY1Sf3hnGOy/Lov/HT19fMKnnOXu7S/8X4y+zmXubxmf7iq52H2M139rQd/ufT8uSo85yr3p96berf02OdzqatTv5V6RU1/cFXPwezvcvWHc54r5BfO+b+lfPYHf7X8+f6C59zlCe2H87lWd83+cFXPzeznavW3Hny39Pw6BM+5yrOp/y4deJ9HrUy9qaYfuKrnXvbVrf5wznGT/Lov/Er19X0Cz/nJNu2H8/nU5pr94aqef9nPSvW3Hvxm6fk+ged85H9T35AOvM+VHk69p6YfuKrnV/a1Wf3hnOMe+XVf+IfV1/OC5xykI/Uj6cD7vGlr6qM1/cBVPdeyr4fVH845HpVf94Xfqr6eFzznJX+Z2kc68D5Xein12Zp+4KqeX9nXVvWHc45n5dd94V9SX88LnvOT/VL3lg68z5+2pb5a0w9c1XMu+3pJ/eGc41X5dV/4berr1214zl0GaX/jdSj7OZd5r2Z/uKrnXPazTf2tB/+e9HyfwHPucnjqQdKB93nUR6nv1/QDV/Xcy77eU38453hfft0X/iP19bzgOa85hs+5pQPvc6zeqZ/U9ANX9bzMvtD7RHrOwXpv6Tk3670KnzfDc85zYupx0oH3+dfuqX00v6p+4Kqes9lXb/WHc44+8uu+8Lurr+cFz/nQhNS/l07j7z3o3Gpg6j41/cBVPZ+zr93VH8459pFf94UfqL5+3YbnHOk87W98XqxzrUNr9oereo5nPwPV33rwh0rP9wk850MXpE6RDrzP10akDqnpB67qOZ59Har+cM4xRH7dF36E+npe8JwjXZF6oXTgfd42KvWYmn4+77mefY1QfzjnOEZ+3Rd+lPp6XvCck81P/aZ04H0uNz71xJp+4Kqe/9nXKPWHc44T5dd94cerr88J+X/X+H/V3tE5of8/tvt0PlP1/297p8CV9ODvk54/R4Tn34lkYb/U/dub9djn/z+Of1dyW+obNf3Btfr/6uDs7z71h2v172GaI/+2Auf5vKH8fl7BH5N6euoZ0oFHp3fej/VPHbBzz/la+TGHD/TN2Rd6A/z+UXnw2Vuc8w5QLn9/h5/G5+baD8f+I1OP0pyq9i/1PbLA2c8A9W+cO8j/UfLr+wR+Lp+f8/m4dODRGZ56fOoJNf3A/R/VZMn7eJydnHvMlnUZxzF4EbQEDLOpsFJEdLwGKpmkqRBqtjYVagaIDRFR05rFwU4eYKV2mGAeAuygE0QrMMNKgZetMk0FrLaUg4emQOo4hTbBDlt8P/f2fuC35+72ny/j+VzX93v9+N0P7/Nc6pXdu/zvn2uipx6wR4dFu+2RLl/N65+PfjivjxJHn69EP35A575wvE5f+sDvH65N/M3RW6Oz1QeePqOjY6PjCrlb5TFHjtEFzrlGyR/O84xVbjjPO05z+bzg50d/GP2R+sDTZ3J0SvTyQu5WecyRY3KBc65x8ofzPFOUG87zXq658tt78T+N/kz1cNRPi04v5GzlX/KdVuCc53L5wzn/dOX1PYFfGv119DfqA0+f66I3Rmc2zGOOHNcVOOeaLn84z3OjcsN53pmay+cF/7vo49E/qA88fb4XvTU6u5C7VR5z5PhegXOumfKH8zy3Kjec552tufxcwT8b/ZPqq/eJ1M+Lzi/kbOVf8p1X4JxntvzhnH++8vqewD8XfTW6UX3g6XNPdHF0ScM85shxT4Fzrvnyh/M8i5UbzvMu0Vw+L/gd0X9Ed6oPPH2WRZdHVxRyt8pjjhzLCpxzLZE/nOdZrtxwnneF5vJzBd8tB9m2f+d6OOpXRVcXcrbyL/muKnDOs0L+cM6/Wnl9T+APiPaK9lYfePr8Jfp8dG3DPObI8ZcC51yr5Q/neZ5XbjjPu1Zz+bzg3x89ItrP59alc5+/RTdGNxVyt8pjjhx/K3DOtVb+cJ5no3LDed5NmsvPFfyA6NGqr94vU78lurWQs5V/yXdLgXOeTfKHc/6tyut7An9c9EPRIeoDT5+d0bejuxrmMUeOnQXOubbKH87zvK3ccJ53l+byecGfHB0e/aj6wNNnvwPjG207cN+5W+UxRw76m3Mu+uEP53nIuZ84z9umuXxe8COjo6JnuU+Xzn3eE+0V7a1zq5vHHDneU+D2yiV/OM/TS7nhPG9vzeX3IfgLo59VffW+mvojo0cVcrbyL/keWeCcp7f84Zz/KOX1PYGfEJ0YvUR94OkzKDo42t4wjzlyDCpwznWU/OE8z2DlhvO87ZrL9wT+6ugXVA9H/UeipxRytvIv+X6kwDlPu/zhnP8U5fXc8NOjM1QPR/2Z0REN/Uu+ZxY45zlF/nDOP0J5/XzAfyN6c/QW9YGnzznR0dExDfOYI8c5Bc65RsgfzvOMVu7q+1LNO0Zz+Z5M67VHt+VAtkfXtHXmru65Rx+NPhad23Pf/ajn9avF4Qfv/nBrlKvk6/yPqZ/vCfwHcyBHRt/XvXMfePq8Hn0j+pLOo24eOPzh7QNHH/KVfD3HS8prX/g35Ovzgh8XHR/9pPrA0+fo/Bw1MHrIAc3ywOEPbx8456LfIeI8xyHKa194XsfXzxU8+6CrVF99Xkk9+6KTG/rDfV5/Tu4P5zwD5e9+8Cern+8JPHudr0Wnqg+892RnRU9vmAeu7j7OuU6WvznmcU77mhtVuCfw7HXmqL76uTP17H3G67zq+sPV3b99TblKvs4/Xv08Nzz7mh+rvrr3qWefc4Xmr+sPV3ePNke5Sr7Of4X6+fmAZz/z8+j96gPvPdaM6DU6j7p54Oruy36sfCVfz3GN8toXfoZ8fU/g2c88qvrq563Us7+Z1dAfru4ezXlmyN/94GepX49w3cWzd3ki+ttoh/pR5/3VnOh3ozc3zAdXd1/mfLPkb465nBPO839X8zkf/Bzl8/2CZ6/zZ9VX7y+pZ+9zd0N/uLp7NeeZI3/3g79b/Xy/4NnPbIq+GF2vftR57/VQdFF0QcN81ffG+vMo7dmc7275m2Mu54Tz/Is0n/PBP6R8vl/w7HneVD2c92MdDf3h6u7fnOch+bsffIf6+X7Bs9fpHv1Pfv/f6ked92Brok9Gn2iYD67u3s35OuRvjrmcE87zP6n5nA9+jfL5fsGzD+qjejjv1dY19Ieru7dznjXydz/4dernn6Pg2fP0jx6iPvDek22OvtgwD1zdfZxzrZO/OeZxTvua21S4J/DsgwaqvnofTD37om06r7r+1edb/TmV9nH9lavk6/zb1M9zw7PXGap6OO/Hdmv+uv5wdfdvA5Wr5Ov8u9XPc8OznzlV9XDec3U/sHP/uv5wdfdoQ5Wr5Ov8cG2F7zPh2bucrfrqfU57oD6av64/XN192KnKVfJ1/j7q57nh2bOMVX31vqa9zwDNX9cfru6e62zlKvk6/wD189zw7E8mqR7Oe6fjNX9df7i6e62xylXydf7j1c9//8GzP/li9Er1gfdeaXh0mM6jbh64uvurScpX8vUcw5TXvvDD5et7As+e5VrVw3kPNbKhP1zdPZfzDJe/+8GPVD/fE3j2Qd+OXq8+8N4/fTp6bsM8cHX3XM41Uv7mmMc57WtuTOGerOm6R1+MvhR9tmtnbm76LYo+EJ2n+0QdfecWOPvSd64455knfzjnf0B5PTf8a9HXVQ9H/S+jSxv6l3x/WeCc5wH5wzn/UuX13PA7o2+qHo76FdGOhv4l3xUFznmWyr/6/Kv8HcrrueHfld/o2q1zPRz1T0efaehf8n26wDlPh/zhnP8Z5fXc8AdH36t6OOrXRzc09C/5ri9wzvOM/OGcf4Pyem74ftH+qoejflN0c0P/ku+mAuc8G+Rffe5U/s3Ku9fn3vxiYPQY1Vefe1O/Lbq9oX/Jd1uBc57N8q8+Jyr/duX13PBDoyeoHo763dF3GvqXfHcXOOfZLn84539HeT03/KnR01QPV9Xni8v9ezTzL/nS15zz0A9/OOfndfp6bvizomerHo763tE+mr+uf8m3d4Fznv3lD+f8fZR3r8+9+cUF0dGqh6P+iGi/hv4l3yMKnPP0kT+c8/dTXs8NPyF6serhqB8UPbahf8l3UIFznn7yh3P+Y5XXc8NPiV6uejjqT4ie2NC/5HtCgXOeY+UP5/wnKq/nhp8enaH66n019WdGRzT0L/meWeCc50T5wzn/COX13PA3RW9WPRz1F0RHN/Qv+V5Q4JxnhPzhnH+08npu+Nui31d99Tym/qLohIb+Jd+LCpzzjJY/nPNPUF7PDT8/erfq4aifHL2soX/Jd3KBc54J8odz/suU13PD/zT6M9XDUT8tOr2hf8l3WoFznsvkD+f805XXc8P/Ovob1cNRf2N0ZkP/ku+NBc55pssfzvlnKq+/l4NfEX0q+rT6VP+dfPrcFL09ekfDPObIcVOBc66Z8ofzPLcrN5znvUNz+Z7Ar4uuVz0c9fdFFxRytvIv+d5X4JznDvnDOf8C5Y1U88NvjL4e3Rl9U/2oo9+S6NLoimhHw3zmyLWkwDnfAvnDeb6lyg/n+VdoPjifT4fm3+v7sPxiQB64o9s611f3O/VbolsL87TyL/luKXDO0yF/OOffqry+X/BDokOjE6OXqB919NsV3R0dnH/Pvr1ns3zmyLWrwDkf/dr13w14vt3KDzexwA3uuW8Of/zgfL/gp0YXqB6O+tOjX9R51vWHm6o/T/eHc552+Zujr3P677ln9b39y9F10T917cx7n/Fg9L7ofH2fQr33Iebq7k2ca7784TzHfcprX/gH5evzeknf978RfVV94L0HeSS6uGGe6n225r7FuR6UP5znWKy89oV/RL5+ruDZE7ylejjvTVY29K/+Xqu5l3GeR+TvfvAr1c/3BL7aW0R3qw+89yeror9vmAeu7p7GuVbKH85z/F557Qu/Sr4+L3j2C32jB6kPvPcuL0Sfa5gHru5+x7lWyR/OczynvPaFf0G+fq7g2Uscpno472leaegPV3cP5DwvyN/94F9RP88Nz15ikOrhvKfZ0dAfru4eyHlekb/7we9QPz8f8OwlTowOVh9472v+FX2rYR64unsh59ohfzjP8Zby2hf+X/L1ecGzz/hY9BT1gfeep0e0a49meeDq7pOci35dxXmOrsprX3her/ZEXfbNswc5R/Vw3gsd3NAfru7eyXl6yN/94A9WP98TePYgY6Lnqg+890P9o30b5oGru4dyroPlD+c5+iqvfeH7y9fnBc/+5HPRseoD773ScdEBDfPA1d1fOVd/+cN5jgHKa1/44+Tr5wqevcsVqofzHuqkhv5wdfdcznOc/N0P/iT18z2BZ+9ybfRK9YH3PmpkdFjDPHB1917OdZL84TzHMOW1L/xI+fq84NnX3BK9Tn2qfw80fdjrjIl+omEeuLr7MucaKX84z/EJ5bUv/Bj5+rzg2fPcHr1Vfar3rfRhH3RxdGzDPHB192zONUb+cJ5jrPLaF/5i+fp9CJ790A9VD+d92ZSG/nB193HOc7H83Q9+ivr5nsCzH/p59F71gffebEb0qoZ54Oru55xrivzhPMdVymtf+Bny9XnBs0d6NPqw+lT/P6f0Yd80K/r1hnng6u71nGuG/OE8x9eV177ws+Tr5wqevdIzqofzPu7Ohv5wdfd9zjNL/u4Hf6f6+Z7AszfaEF2jPvDety2Mzm2YB67uXs+57pQ/nOeYq7z2hV8oX58XPPuht6Ivqg+893Aro4sa5oGru+9zroXyh/Mci5TXvvAr5bvX96fh2BsNjB7a1rlP9f1p+rBf2hZ9uWEeuLp7PedaKX84z/Gy8toXfpt8I9X7ETz7oUnRC6Pnqh913scdHz0y2rdns3xwdfd/zke/vgWOuZwT7kKdg+dyPnPkq76fFr9Adbzuvdzx/6cfXN193yTlsa+fq1UJuj66IfpCdLX2EnelwYLowuj90R/o+y7q8bmrwDkH/e8S51w/kH/1/qd5Fip39f6uee/XXD4v+I3RzdG/qw88fZZEfxF9uJC7VR5z5FhS4JzrfvnDeZ5fKDec531Yc/nnIfgd0X+oHo76ZdHlhZyt/Eu+ywqc8zwsfzjnX668vifw7/BGkEb7devcB54+j0f/GH2qYR5z5Hi8wDnXcvnDeZ4/Kjec531Kc/m84NuivaN91AeePquja6PrCrlb5TFHjtUFzrmekj+c51mr3HCed53m8nMFf3j0CNXDUf9qdGMhZyv/ku+rBc551skfzvk3Kq/vCfwHogP4uVB94OnzWnRLdGvDPObI8VqBc66N8ofzPFuUG87zbtVcPi/49uiHokPUB54+/4y+Hd1VyN0qjzly/LPAOddW+cN5nreVG87z7tJcfq7gh0c/qno46rvl59K2HvvO2cq/5Etfc85Dvzb9nO381euFz1fwI6Ifj45yny6d+7w7elC0l86jbh5z5Hh3gdsrl/zhPM9Byg3neXtpLp8X/Kei50XPVx94+hwaPSx6eCF3qzzmyHFogXOuXvKH8zyHKTec5z1cc/m5gh8fvUj1cNQPjB5TyNnKv+Q7sMA5z+Hyh3P+Y5TX9wT+kujk6GXqA0+f9uiQ6NCGecyRo73AOdcx8ofzPEOUG87zDtVcPi/4L0WnRqepDzx9ToueHj2jkLtVHnPkOK3AOddQ+cN5ntOVG87znqG5/FzBfzP6LdXDUX9e9PxCzlb+Jd/zCpzznCF/OOc/X3l9T+C/E50dnaM+8PT5THRcdHzDPObI8ZkC51znyx/O84xTbjjPO15z+bzg74rOjc5TH3j6TIxOil5ayN0qjzlyTCxwzjVe/nCeZ5Jyw3neSzWXnyv4B6IPqh6O+i9HpxZytvIv+X65wDnPpfKHc/6pyut7Ar84+kj0V+oDT59ro9dHb2iYxxw5ri1wzjVV/nCe53rlhvO8N2gunxf8yugT0SfVB54+t0TnRG8r5G6Vxxw5bilwznWD/OE8zxzlhvO8t2kunxf8X6PPRZ9XH3j6/CR6T/TeQu5WecyR4ycFzrlukz+c57lHueE8772ay+9D8NujO1QPR/1j0WWFnK38S76PFTjnuVf+cM6/THl9T+D75Dc+yH6nrXMfePr8FxIDpI94nJ2bedTe07mGQxJTaNVUU48M4pABaQmR0GpNNbNqSEol0ioRlJSWKK1T81xBopEgoVQQNUQRraElmqkkiChNFM1UmqSicspZ67ivb63vYq93v+k/d33vvZ/nvp+997P3+3t/mbtWm///36Lg4uDjwXafQJt/5v8sbdf688cKvC+0/wTnFnid2392vMXiEadT+9Y654rH58RdLF9rhtde/P7B44IDFQc+cbqs/QluF+y29mfrbqTHPHQQ3zzrIh754R1XiLddgUfcbuLhu6344zSOzxl3iupSmw+e43dTXPOI6/xrtGnNnxGhrwffCM5s25o3KgvlzuBdwZvWbM1jHHFHFXivF3h3FuKhq5TX+u9SPPuGvyC4UOPhMf6B4IPyX5sf3gLV2/HhvSFdpbzW/6Di2Tf8ZcHlGg+P8ZODT8h/bX54y1Rvx4e3ULpKea3/CcWzb/ir5Q+rt2s9Hh7j/xScKv+1+eGRD77jwyMOukp5rX+q4tk3/C8EN9B4eIyfG3xN/mvzt5xP7VrzHR/e6tJVymv9rymefcPfMvgljYfH+LeD78h/bX54W6rejg9vA+kq5bX+dxTPvuF3DW6j8fAY/27wPfmvzQ+vq+rt+PC+JF2lvNb/nuLZN/wdg700Hh7jPwyulP/a/PB2VL0dH9420lXKa/0rFc++4fcN9tN4eIxvn/vRGmu1jl+bH15f1dvx4fWSrlJe64fXorfNZ/P3Du6j8fAY//ng+vJfmx/e3qq348PrJ12lvNa/vuLZN/zDgodrPDzGbxHcUv5r88M7TPV2fHj7SFcpr/VvqXj2Df/Y4Hc0Hh7j/zu4rfzX5od3rOrt+PAOl65SXuvfVvHsG/73gydqPDzG9wp+Wf5r88P7vurt+PC+I12lvNb/ZcWzb/hnBX+k8S39JeO/FtxT/mvzwztL9XZ8eCdKVymv9e+pePYN/+LgJRoPj/GHBQ+X/9r88C5WvR0f3o+kq5TX+g9XPPuG/4vgdRrfsm8z/pjgsfJfmx/eL1Rvx4d3iXSV8lr/sYpn3/B/GRyt8fAY/73gCfJfmx/eL1Vvx4d3nXSV8lr/CYpn3/DvDk7QeHiMPzN4lvzX5od3t+rt+PBGS1cpr/WfpXj2DX9S8BGNh8f4nwUvkP/a/PAmqd6OD2+CdJXyWv8FiufnivCnBJ8PPqE48IlzXXBE8BLVo1YPvCmqv/PAe0T6Snnt4xLpdV74I5TX6wT+nOCrGt+yPzN+XHD8KuaHN0fz5PjwrGeE8jse/PGKF2jxD5/n38uCi4JvKx7jiMfz8snBh4ITV1EfvKWaD+eDZ33jld88fFknPPt/SP6sD/5k6fP6gs9z8y7tW4+H598flqxifni1v29Yz2Tldzz4SxQvj71b+lFnPUcfFBwQ7BXcUXEZ798Xuge3Dq7M5x+uol54tb9rWOcS5TcPf9YJr5fqYV/wBqh+roN9mNet8HsK/HEax+f+3aN7k/ng1f6eMkh6nNfn3PMRunYCrBP8Z/7+p7at+SMS4MXgrOBjwev1nITx5BlR4FkH8UeIZ13XKz88+3hMeuHZ9yz5834kL3E3ybg1g//I318NTm3berz1/jX45+AjwfHBG6R3asG/ebV1ss4blB+efY2XXniuwyPyZ33U768Ffa7vn1U3r+ep0vlmcE5wmtaz/d4THBe8UXqmFeplXm1dretG5YdnH+Ok13nh36O8PlenKe5rwen6ncm67giOVP7pBT/m1fqeLl2lvNZ/h+LZ9wvhzQ2+EnxRvkdn/O3B24I3Kz/jiDu6wJtb4N0unvXcrPyOB/82xfP+eFH8+cG/BWdpfzjvhOC9wTHSM6ug27xaf9Y1RvkdDz8TCvHs9175cr1mh/ducI0EWpH/fkn1GpsAvw3ODD4ZvEV6GE+esQWedRB/rHjWdYvyw7OfmdINz36flC/Xi7zw18349YIvq17W91Lw5eCt0vNywZ95tXWwrluV3/Hw81Ih3qf8ype/P7Ju2cfzgm8F39G6Zpz3+d3B+4L3a13X9otm99M86bceeG/Jn/XCs98J8uN48O9XvE99T9e5uCT4dvAvOj9avqfrnJ0UnBj8lc7D2vOo2XP9Neks5f2LfFmn81KHSYW8rtNE1cH3Y/o0/fW94EfBj9XH6GuMd39/NPhccIr6lPsf8XxemFd7rtT2Xft9tBDP/n8rX/Bct+dUD3iu6xTVy/uA+yH38/8EP9B6YH0wzvf9Z4NPaT00ex9t9vtF7bq1n0nS67zU4dlCXtfpKdXB5yD9i/70b60P1gt897mnNd9eR43uMc3209r1az9PF+LZ76Py5b5BP18cfD+4Mvih8qKD8fT9h4O/D/4h+IzyN3uewEMffOdttk7vy7f1w1uputgfPNfpafl3PPjPKJ77Bv2f/cQ++N/g0uDf1Td8XrBv/hh8PPgb6Xtb8fh8oniNzid4f5fOUt7avrFU/u3H8cx7qlDn9zR/zM9aCbhx8CPV2fuL+Xwh+IbOhdp92ux5VLv+7OuFAs9+n5MfeK7PG/LvfsO80Nc7ZNzng+0JHGT+GO/+Pzs4Jzgj+LzWe+26qD134BGHP5Ty2u/sQrw2qoP9wHO9ZqgO8FzfOaqbz0/WB32qXcZ9Lsh8w3f/mh58Reugtv81u07RR1zrgId++NZpnvO+UqgX9xiek34xSN2Zd/h+LjtP8+H1UHtPqn3+W7sO7WdeIZ79zpYv14t+Qr/YNNgl+LHq5b4zP7gk6Pt7o3t5s/3NuqYov+PhZ34hnv0ukS+fS+xv9u9WwY7BLYLrt2s9zv1gQXBh8K3gq6vYV9orL3FmFOKhe0Eh3vryU9K3hfzbDzzXaaHq4HOJ/c7+3yi4ebCT5pf5Zrz7xOvBvwUXaZ69Lhr1ndrzFt5G8mNd8DaXX+tudn27TvPl33nhL1Je7wP6C/2mc3A7rS/WG+PcjxYHl2k9NHtu1va/ZveB/S0uxLPvBfIFz3Vapjp4H7yr/kmf6hbcJfhV6qx94Ocq9LflwdV43yI4U3prn9PUPkev7d/2Q7y1/b6J6rG8EM/1wvdy8VxP8sH3+cm+2TbYI9hd+wk++2lp8P3gv1ZxX8IjP3zngWddi5QfXg/5sl7ziPsv8dw3uMfwe/ZmwZ21z9h3jPPv3W8GP9b+8b5s9Ls5vNr7lXW/WYhX2zfs/2P5g+f6LJZ/13lTzTPzs5P2SxfV2ecD8/mR+ob3V+050+i+1ew6rd3/9r1cvpwX/kfK6zrT7+nn2wd7BrcOdlSdfT58EFwR/EdwofQ1ukc1ex51lM5S3q3lyzqdlzp8UMjrOq1QHVznFTpf6M/fDh4VXFd19u+09POuwU7Bl6Sv0e+98Gp/D609z+yDeJ3Es/+uOsfhuT6d5N/3Dd5H4j2w7wZ/EByk/tfSXzPe75dtnzy7BbsHS32z9n212vem7AM9jlfb1+0fXnfV3fXqrjrAc335HJ3eB/R/zoPewa9p37EPGefzgsDrBEv7tNF9tfZ8arY/2A+8dVQ/1wFfzus6EadNoc6cA9xvvhLsE9xV5wTjfP/5T7BtEqwe9LnT6B5Vez7B+4r0Ww+8PvJnvfDsl7yri+f68HnbQr/pqXlmfvYMfp19EdxB/cbnBvPaIbgu+oL/bvIcgtdT+YmzYhXX7Q7yVdK3m+pgP85L3Tpof8NzXddVvbwPuC/tpHn9RvCbQb43Mc73K9bBesEN9b0KfbX3tNrvc7Xr1j5Wk07Hw/962tfwXJ8N5Z/1y/dC3r8+Jzhc5xbnWMv7iwmwV+LtrXOj2fe7zUMH8c2rPVftY3vphWfffL5XYV1yP+Je89Pg/wR/zvxoXfo+tX/woODBQb/31uh9Nni19zfrI97B4tkfeh3P/g+SP3iuz8Hy7/7Meqev7xHcDz3BA7QvGO/+v1Zwg+BGwY21P2rPk2b35R7yY13w9pNf64Zn3+vJD7z9VTf7N4+4G4vn+eEeyj3ze8EjmN8g95+dNT++v+4Q3Cq4qe5JvlfVPr+ovTfX3ufsq4308mfXYVP5g+e6baV62Ad8PseH+1Rv5T8keGCQ85jzm3H2s1lwE53XPt8b3XObrV/tvcJ+OkgvPPvfRP6sD/5m0ufzc0/FPYjzK8h9B771fTH4Od8bFb90b2q2Dl+XvlLeveTHOp3XPPJ6XdKv6DNHB/sHjwxyf2Gc+1vnYJdgx8K9qdF9qNl+an0bKr/j4a9zIZ59d5QveK5TF9XB65J+/q3gAOlBH3z6/H8Ft1b80rlSOi/gkR++8zRbrwHyZb3mOR68dcJjfe6ieWU+hgZ/Ejw3yPMtnocRx/d35rN3cN/gPsHS87NGvwfBq/3+UPvcrnZ9uz69CzzXq6v8w3Od91Xd4Hke9lFdfU+hP9HPjw8ODh4TPFR9jPE+J3oEewa3CW6ufl7bH5s9nw6S3lJe++1RiHeo6mA/8I5R3ewfnuvbU3XzecB5y/3ntOAp0o+flt+ZdJ/qE9xF+Zo93+HV3t9q62x/fQrx7LuHfMFznXZRHbwP6IP0xYHBIcGTg6fqnGG8+2e34E7BnYO7ruL5Vdu34VlnF+WHN1C+rR/eENXF/uCdrLrZv3no3FU874Mj5YdxpwfPUL9lnO8L5Okb7Ffoo7X3jto+Xzsf9tFbOh0P/30L8VyffvLvOrOv2Dc/DA4LnqD+xTjvwz2Cuwd31LlQ2w+b3feDpbOU9wT5sk7npQ57FPK6TrurDr5/0u/4vnpj8EL1Qfj+3jsoeIj6GnpqvzfX9l3rHFSIZ/19pBOe/R4iX16X9Iuzg+cHz9M+YF8wjn7yjeA3g/tpH3jfNOpP8NAD3/ma3a/201d64Z2vetifecTdTzzX+RTNH/NzVfBy7QfG+XxlPo8OHqH9gL5G53Sz+7B2/dnHHtLpePg/uhDP9TlC/r3/T9e8XB28Uv0avtdB/+BRhfOhUd9vdr1ZVz/ldzz89C/Es9+j5MvrcpjmizpfEbwoeKbWpfsw83Jk8NDgV5vs5/CGKS9xdl/F9Xam/JT0XST/9uO85pHX9+ChmmfmZ2zwruD4IN83Ge/7CvN6UnBY8NTgvtJbe/+p/T5cu27tZ1/pdDzqcVIhnus1THWA53qeqjp5H7C/6OuXBa8J3qD9xzj3/W8FBwQHav/Vnh/N7vvLpN964F0jf9YLz377y4/jwR+oeB3CYz/w+x7PZXieckHw/uCDwd8Efxbkdz/i+f0unsscGBwePC94bvCAoH8vbPT+GLza3ylrn0O5DgcWeK7D/vIDz3U7QP7hue7DVT94npfzVF94nrdzVX/vO/oo5/yo4MjgteqzjPM9YHDw+OC3dR7V9m14je4d8K6QzlJe+xtciHet/NsPPNfpeNXB5w/3Lb4f3BL8VfB26UMv4/09Ykjw9OBpym9ftfe9Rt9fmq2n/Q4pxLP/wfIFz3U7XfWA57qepnp5H9BHrw+OCY4L3qo+yzj67HHBE4OnBE8u9G3ykNdxavs7vDHSbz3w7GOgdMIbpzrYl3nEPVk815l7xtXSwfg7g2NVZ9+jrfuMwj2k0X0cXu39p/Zcrq2z/Z4kP44H/wzFc7+hL7Gf2AcTg/cFfx28Sf3G/Yz9c07w7OAPg99tsj/CG6n8xDlevNr+cJN8lfS5HucU4v1a9bJveK7r2aqXf3fk/TTeP7st+GTwmeDjwTuCvLdNHL/fNjR4efCq4EXBHwSbfS8cXu37dda7m/I7Hv6HFuK5PpfLL7xP1Uv+4bm+F6le8DwfV6m+vl8Pkm90PBX8Y/AxnYuckzyPJJ7f48fPFcFrghfqHCw9x2z0PhG82n9PUPv8tHY91N4XXL8hqoPzUv8rCnk9LxeqvvA8j9doPnze0bc5J+8NPhB8SH295bmwztEfB38SPL9wTjQ6j2vPE3j3Sr/1wLOPM6QT3gOqg32ZR9zzxXOd6efc+/4QfDY4Wf2ecb4XXh28Nnix+jj6Gt0vmz1nrPvqQjz7OEc64dn3xfIFz3W6VnXwvWKs5pn5+V1wevDpIM+BGO/7DfN6aXBk8MrgMOmtvS/VPqeqXbf2M0w6HY96XFqI53qNVB3guZ5Xqk5+/s79g/XB/P8++HC71nzfU1gnlwV/2uQ9B959ykecs8WrXc8Py0dJn/1epnjuG/SZR4PTgjM1j8wr4+hDPw/eGLxJ81jqf6W+Bg898J2v2fU2TT6tG559Xypf5hHX/l1n/r3FrODs4Iwg97vhqjP/HmNMcGxwVLB0X2z07zvMQ9eYAq/2nmo/Q6UXnv2Pkj94rtdY1cP7n+eJLwTfDL4Y5DkifJ4zjg7eE7w56OeLtc8rrWN0gWddw5Ufnv3cI93w7Pdm+XK9eD7L89LXg/OD81QvP8f9Px84tFR4nJ2cd9CV1bnFFQEFBESJoojiJJYQE41iF8WGioI1ZjIpc/9JM8ZozKRZomKNBTWa6LUhMYo9YIkx0dBBQFCUoggWuqaAKE3Knbl3/b6Z73ez79nn+s/6OHvt9TzrOe+73733u48jttniv/97PPhYsO3/wBaj8scVwVPSfol47xV4Jb0FwREFPdrfb9s6vxHi0U78x+SnQ3hbBy8J79Lgg8HXgouCM4NXtm3df0B0TwyeH7w7+GTwnuCpype45GE9eJcoPjoDxHtQfpwXvCvlq5Sf63F3Qc/1elJ1gOd63qM6BbZoH3wxvEnBd4NzgpODo9u27ndthG4NPhp8IHhb8NfK70Xp0X6teOQD3/HgjVaepbj292hBb7L82w881+kB1YHrt13wct2v3D9Lg0PatuYPjI7v65HBQcoHXeK4P7zLFQ+dgeLVji/Of5DytB78kdLjuoI/RPxlwavatuY53qjgYMUfov6DC3Ws9eN8Biu+9eCPkp7vx5fCmxJ8K7gkOC84VffjdRG6Pfhg8I/BPwTvUH7EIa514L2kuOhcJ95byt/5wJsqP6X8lqgO9gVvnupk367z38J7NTg/+E7wg+B01fn6CP1n8OHgI8Fngncqv79Jj/brxSMf+I4Hz/ndqfjw5sun84b3jupgX+YR/xnx/Pzn+fZIcFxwefBfwdl6DtKf5+BFwZuCTwf/HBxWeB4SlzysB6/2OTxOfpyXefh8usCz77vlB57rNEz+4bmuf1a9/FwaHt6M4Irg34Nj9Fw6Lzp3BV8IPhe8QfkMlw7t54lHfPiOA8953aD41sPPCwU9+31OvjqGx/gxLLy/BP8Z/DS4Prg4OIH7qW1rnXPzx9XB54MTguODTwWHBi9U/sOkT/u54pEvfMeH97DyLsW1/+cLeq7DUPmC57o9pTrAc70nqH7w/H2MV339PHgovL8G1wY3BP8RHKvnwQURuiY4Njgx+KfgjcqPOMS1DryHFBedCwp65D22oGcfNypPePb9J/mC5zpNVB38PJig77lNBpYOwXX5nPk183b6+/qZFnw9OC5Ymt9PkC7tQ8WrvW5r1xX29ajydVzqMq0Q1/UapzrAc31fV918H4xMx9eDbdOvU3BjPn9G98HFEbo3OD04KzgpeJnyGyk92i8Wj3zgOx4853eZ4lsPf9MLevY9Sb7guU6zVAffB8wPmL8xn1oT7Bqd9kGe6/RnHuF535jgm8FX9fwnX+KSh/Xg1c5jauej9vO08rQe9RhT0HO93lQd4Lmer6pO/n5G6Tri+98y/bcPbsrnC/T9sL/m629q8O3g5KD32YhLHtaDV7u/V3tf2M8I5Wk96jG1oOc6TZZ/eK7r26qXxynmHxODm4Od0797kPkC/Zif3BJ8OTgnuKAwnyAOca0Dr3Ze5LxfLujZx/PKE579z5E/eK7PAvl3nZlXjEcg/boEPxNcqzoz77g5OCU4N/iO5gnIE4e41ml2vuO8pxT07GOs8oRn/3PlD57r8478u86sZ1iHtEu/XVh4tWvth35e/8wILlJe9jtG3yvtXr/Vrrdq62x/Mwp69j1FvlrCqU6LVAfXmXkv89qt0q9nkPtooursefIrwcW6z3z/jpUe7V4P1M7La8cN+3uloGffL8sXPNdpserg5yf74sx3mafukP7dgivz+Vw9P72fzvx2fnBe8C/B4cp3jnRpf0C8Rvv48NAh31Lc2nk+OtTBfqxH3eYX9FzXeaqX7wP28VYHd0q/HkHmVczD6Mc+3+jge8H3Ne/yPK3RviE88oHveM3OD/GFrvOGZ99j5Mt68N+XnuvMPtSs4Lbpt1twm+AK1Zl9qvuDs4PLgjODLyg/4hDXOvBq98ec9+yCnn28oDzh2fdM+YLnOi1THVxn9k/ZH905/foEd+T5oDp7v3Vh8OPgu8EnlV/tvm3te1vnvbCgZx9PKk949v2ufMFznT5WHbxf/EY67p0P9gnyfXG9wL8vOiuDH+l79HWEPjq031fgkcfKAq/2+rWP2coXnn1/JH++LllHsf7pnX67B7djHNF16XXXB8HlwbeCjyu/2nMctes85/e44lsPfx8U9Oz7LfmC5zotVx18XbKfszC4axq+EGR/Bj77PE8ElwQ/CU5XPugSx/3h1e4rOc8lBT3nP115wrPfT+TL8zPOhzCOME58PtirXWtd8qW/z5UwvqwKLlV8+5qp74v2e8RrdJ6l2XrWjp+ux6oCz3VaIv/wXNelqpevZ54HvMfrmIYvBnfW9ez3gW8E12g8J5/a94m1zyXn+UZBzz7WKF949rlQfjzOcr6EcYrxZd/g1tRd46zPrzEerQ6+FvT5j0bn4OA1OvfS7DhrHyOVJzz7fk2+HBf+asV1nT9Mx1XBz6bf/sHPMY9QnZ+N0IvBfwTXB/8ZfEn5EYe41oFHO3HReVY88kXX+cBDBz+l/PCNrn3B+5zqZN++//l++f6+FNyP+bDmWb4O1gbXBZs9l9Ts9ea8Rim+9fCztqBnv+vky/XivRnve/um4eAg78Hg+/3yJi70PCinKZ/a99O17++c56aCnvOfpjzNsx48P/95/8L7kAOCJwUPDDJeM77T3+9tNgS3T6CNGtebPacCr/Z9Ue3zx343FPTsH72N4p1U0Nte38+Bqq/r5O+HfVLW06yXDwueETyU65rxPv19joV19lYJ1DPYJjhDvhqdi4FXu59buz9gP+i1UT1dD3yV9KiXfcM7o6AH389B9lc593B0+p0VPA6ddq37+RxFh+j3CnYOviIftecxavd9nTd5WM8+0Ous+uHber3EO051sm/XmfdevK86JPj94FFBzvvQz+/Jtoz+gcQJTpDf2vNFte/lnF/L+SPVxf7I13rfL/AOlN5RqpN9u87sM3NO5Njg+cHDgzvoeva5k22jfyj5BOfLR+35ldr9b+dNHtazj5a8Ovx7Hv7tB975hbjwPa7z3pxzImcHvx78dvA0vl+N6z5/slsC7BncL7hzcKr81763rz334jzR21l1sl/yLulRB/uB9/WC3p7ifVv1dZ18H7D/z/7+QcEfBk8OtpwnST+/L9gcPCRxdgi+Kb+151dq3084P/R2UF3sb3NB74cF3iHSO1l1sm/XmfdU3Ifcb98Nfi24h+rs91rcj18Ofjb4oXw0ej8Gr5viojPv/zmO7CE/pfy+qzrYF7yvqU727fGG8wycQxgQPDf4VT23mRfQ3+cgtkuAvsE9iFuYPzQ6Hwqv9vxF7bzFfsnbekerDvYD79yCXl/xvqr6uk6+D3ifuFdwYPDHuu+4X1v2uyK0Itg9+kcGS/dzo/eX8MgHvuM1O44MlE/nDe8g+bcfeD9WvezfdWbhzzmRU4IXBU8MdlGdfe7kM9HvF+wWnKv8as8J1Z5zcX7odVP97I98S3r4tx94FxX0+hXqzHsgzvEdH/xp8IRgb9XZ5wK7RL9/sGvwA/moPV9Y+37KeZOH9ewDva6q308Lev3FO0F1sm/Xmf0j1hXM9y8InsP4ozr/r99BRP/wYO/gJvlt9HuKZve1atdFfeWnlB++0bUveOeoTvbtOnMuinNP/YI/Cn4r2Fl19jmqraN/WHCf4Bz5qD3HWXtuy/mht4/qYn/ka70fFXiHSe9bqpN9e/+W9QPz/5/ovuG+hO91xlHB0v3a6Hxxs+uZ2nHiePlxnvB+Iv/25XqxH8N+ymX6XnqqXt63OQndwvfc6Lxfs/tDtddXP/lxnvAuk3/78n3MfiL7gT8LflPPN56fLee3IsR+4THBvYOl52ujc6nN7nfWPtd/Jp/OG94p8m8/8L6petm/68z+OutP1oWnBy8OHqA6+/cYrBt3CZ4Q3CC/jX7XAa923792/XyA/JTyO111sC94F6tO9u37n3kg87grg6xPWP/A93zx1GBpXdTo/Hqz89La9dgA+XGe8K6Uf/tyvXj+8Vz6ZZB91O6ql5+TxwdL+7KNflfR7PO4dj/4EPlxnvB+Kf/25fuY9428V/xG8FdB9jvZd6Wf30/uFTw5WNqXbfQ7RXi170Nr94O/IZ/OG96x8m8/8H6letm/68y5Ls5t9Q9eEWR/s5Pq7HNgHaN/SrC0v9rod4rwas+d1e7r2h/5Wu+KAu8U1fls1cm+Ay3jAOc6Obf5leDPg98LDsIH85T093nQ3RPg2OABwZ2CzZ5nhld7DtV5oreT6mS/5F3Sow72A+/nBb1jxfue6us6eXzeRn7IZ0iQ97LwfW6cPAcFt1I+tefOa98r19b/MPko5TdEvu3H1zPnaDi3dUTwvOAvgmcGOU9Df58Ha5cABwePC+4aXCv/tefLas/72Af5WM9+0NtV9TyvoHeweGeqXvYN7xeqr+vkcZ1zI5z7uDR4YfDIIOcc6edzJidG/4hg++Aa1aX2XGXtuRbnh1571eVS+XTe1sO//cC7UPWyf9eZ84ucEz81eLW+/31VZ5873zH6pwVL11/t+fVG5yqtR97kYb3a++MI+bcfeFcX4p5WGG84D83vRAYHvxO8KnhMkPPO9PfvT3okwP7BwcFOwVXyVXseu/Z3L84TvU6qk/2Sd0mPOtgPvO8U9PYX7yrV13XyfcB1xH40+8mXBC/X900//66C/eYBwYHBHZVfo99nNHt91+6nXyJ/zhfeqfJd8nG56mTfnqf00nXD935N8Aeap/icP9fD6cGDlE+j3wnA+0GBZ73a6/wa+XGejgvfPnxd7qo86X9tkHk+6wP6+XcU6J8RLK0fan+P0ej3Ms3WuXZ901/+7QfetaqX/bvO/E6C5zXP2+s03vRRnf27Cp7HZwZL412j3w3Ca/Q7jmbH2dp5yXWqg33BG6w62bf/v6T8/u/6IOsg1lnw+D3gWdEprbsa/Z6wFBdd82rXe18p6O1e8M18m/nyr4P7ybfn42cH/TuARuf7m53vOx/0zi7w0HWe9j06vPXwQ+jVXrrpPz64JLhU8dFB1/1axrH2/55X0iOvJQU9571UeXo8mcD8LR8cEdw92CM4T+PJ0Oi9xrwz/wPF5fn3+8E/KD/ioUf7UPHIB77jwUOHPEtx7Y98rWff6C0Xz3Varjq4zhOTZ4d88PngPsGNaX9Hdb4luq8zX+Y+D04KPqL8JkqP9lvEIx/4jgcPHfIsxbWfScrXcanDqkJc1+kj1cHztkn5Y6vw9w5+ObhA87Zbo/MK42zw0+AI5YM+OrTfKh7x4TsOPOc1QvGth5+VBT37/VS+XK+x+WNZ8ID0OyTYvX1r/o3RGRXcENwy1/0C5YMucdwfHu3EQ+fGgh55bijoOf8FyrPl/Z780r6hUK8x3J/hfzHYh+eE6nVDdF4NrmG+E5yuvNFHh/YbxCM+fMdpmW8pr+mKbz38rCno2e/H8hVoqdv05Pem7huuz77BLwU38TxK/zsj+Hvdj1zXm4Jrg5OVL3HJw3rwaCc+OneKt0B+nFez97V9T5YfeK7TWvl3XPibFNfPpfGJ2yUf7BU8mvsr7R/quXRz9OYGV/D95/6ZmH8/q/zGS4/2m8UjH/iOBw8d8izFtZ+JytdxqcOKQlzXCZ2WOoTHdTyV9VH4+waPD+4W7BlcpPvgjgguDK4OdkncZfn34uCTypf46NJ+h3jkB99x4aFDvqW49ru6oGf/6C0Tz/Vapjq07KOqvrQT3/fBtPhZHNw+DccGDw92bN+632+j91Tw7eC25BN8Qz6IQ1zrwKOduOj8VjzyRdf5wLOPlrxUP/vHj/VcH3S2LcyDxyW/bvmgf/AEnpvBzRpvbkrcecGO0e8anJHPX1Z+xEOP9pvEIx/4jgcPHfIsxbUfeF1VZ9cBX47rOqED3+PNG8nz7eAu6feF4JF63vP8p/99EXwouCj4SbB94pbmCcQlD+vBo5346NwnHvmj67yance4Hp8U9FwvfH8inuu5RnXyPPLl/LFN+P2Ch/J81zrlN9Gbybw0um2CY5UP+ujQ/hvxiA/fceA5L/Ta6Hq2H/K0nv2is3Vh3Jis9SfrweP0vOb5Tb/bEtfr0M56Xvv5ThziWgce7cRF5zbxatfFtfMP+14hX44Ln3bius5zk9+W+eCg4IF8T8H5Gp+HR29qcHNwY3Ba8GH5IB56tA8Xj3zgOx48dMizFNf+Nhf07HuafMFznTaqDq7zFO1bsY90svLaUtfz7dHzvtQOHf9vH1P0vdJ+u3jkA9/xmq1f7X6a/ePHPNdns/x7nJ2ZP7qGv19wAOO0xtl7ovdmcF1wu+iPUT7oo0P7PeIRH77jwHNeYxTfevhZV9CzX3Tgu16v5I/O4Q8Ksq/EPhT830VnTnCn6Jf2p9BHh/bfiUd8+I7T7L6Y/ZCn9ex3pXz5Pn6d9xDBPdOwv9Y9rIPod290xwX/FVwfLK2TiENc68Cjnbjo3Cse+aLrfJpdx+EbXfsyz3rwXOcZGtcZZwfqPuiqOt+l5w/jcnfdB75viENc68CbofEFnbvEq32O1N7X9r1OvhwXPu3EDbSMA+/HzxLtQ7Lfd1bwmOC2Wjc8HsE/Br3f2CvxOwVnyxdxycN68GgnPjqPi0f+6DqvZvdJ7Zu4nVR31wvf1nM90elVGG9ei49O+eCw4OAg70s66D64O3FnBbeKfo9g6f0L8dCj/W7xyAe+4zX73sf+yNd69o1eD30frhPt6Po+eE/7W+w3/UfwHOYpwb9rv+6xCHofq0/i9Q7Oz+fPyRfx0aX9MfHID77jwkOHfEtx7Qteb9Wzdr/OdcO/ea4r8foU7oOFWt+yjjwjyHsd3hfR74nE9fq1p977+H0S8dCj/QnxyAe+4zX7Hqt23W3f6PUUz3WivU2hzrP1XoT3D2cGOW+wXnUelvh+n7Fr4pTOLxAPPdqHiUc+8B0PXu25idr3MPa9RL6s18Lv2FrP8+5Z+ePE8E8Kcs6A8wvw749Ot+huHyyda0AfHdrvL/DIA33zas9T2Ec75QvPvmnvVhiflybP1Vp/sc45W88Pnif0HxnB0UGvs3bT88HPHeKSh/X+C+PMDnd4nJ2ce9RQZZnFP28gH6KC3ARUBJfKPUFTExW0JpWLIKLimgY1hZrCELSpZrxUVt51zZSmlmtQVETTZd4IarQUJsVLjiikpqB4w0sqghiC84f7x1r86l3nHP1nf3xnn+d59j7nvZ73c+uWT/97bZtPsX2bT/Hpdp/incGtw/swvLXBB3L99+L9U5vN+VzfsXVzHvkODG7Vunl+eMcWeLsqHnnhc52824aXyy1LU992+cXI4MTgwcFt22x+36zU90ywfeLvFmwb/D/pIB/xuD5LPOqB73zwtlWdpbzoIq7rhmfdbaXL8eBzvX3B52ejozW/+ELw+ODng13k8+zUuQQ9ib97sCX4ovSSh7x/F0d1kZc4s8WjXuK6HnjWQbwW8ay7RbqcF/6m6wWf34mej4OH5sLRwXHBbvJ5XupcFGyX+DsHewRXyBfykNdx4HGdvMSZJx71Etf1wLMO4vUQz/rR43j2p4f02+dVem94jocEe7fZ/Ab+eXfq9HuxbXBVfv+IfCEfgbh+t3jUA9/54LWozlLeuu9zb+m3Hsczr6Xg8/Lo2Cm/OC54SnAAz0s+z03evwR7J/7A4Jr8fqXqIw95HQce18lLnLniUS9xXQ+8HtJTqs+64Q1UPPvE9d4Fn99Q+6QdfDU4IthRPt+V/G5/g4Ktweekg3zE4/pd4lEPfOeD11F1lvLW7Tesu1W6HA/+IPWXNJe2wfXR0Tn8/YOnBk8Ojgl2YBzO/QsT8IXgFskzODgg2C24VPrJT1yuLxSP+uA7L7wOqreUF53Edf3m4Qe6zLNP3aQfnn0dIL/wle51m/C+FDwteFiwU5vN+U9Exw6JNyS4XfB5+bCN4nD9CfHID9954HVSfaW81rGd6nVe+FzfodBv7Jgfugb7BEcFRwf7qt94NvUtD74V7JI8XYNvSwd5yOs48HZUXuI8K14f1e964I2SPtcLr690l3TYH3hdCu9lr/COCZ4QnBTcRe/lq8nXK/H6BPsGX1M9vRSH66+KR374zgPPdRGvr3jWQ52OZ719pcvv5W754aDgEcEzgv8aPFLv5Rupc5vE7RQ8KLhvcCfVRx7yOg683ZSXOG/I5yNUv+sxD10HFXjWu5P0wLM/+0q/38tdw/ticEpwZvAkvZevR+f2ife54MHB/qqHuOTx/fB2VT7ivC5fXSf5Hc/191ed8Kz3YOnye7l3fugXHBv8dvDM4OF6L9+PjtXB7ok/InhIsIPqIw95HQfe3spLnPfFG6v6XQ886+igOh0P/ehxPPtziPR7njWQ5xucHJwa/LreA94L7l+bgH8L9kuefYLD9Jz9/pCXOhwP3kDlJ85a8SZLj+tq+n5PlS/WB88+fU76HQ/+MMVzO9hT7wfP9ftB1uOs37nv3ej2+zRK63Wv7/dUPK6/K5+pB77zNd1XqNsOrHtn6XI8+KMUzz7vlR+YJzMP/jf69+A+8vm96Pa8emRwY66vl397KR7X3xOPeuA7H7x9VGcpr/XAG6l4ddcN9mmkePa5f34YFBwe/G7w3OAE+fxB6vww2CbxDw8eGdxF9ZGHvI4Dr7/yEucD8YarftdjHrqo0zzr3UV64NmfI6Xf8w32PdjXuED1UB98748co/iue4DicH2N/Kq7D1PXL+uhTsez3sOly+PgYLUL3udLgucFmV8zH+f+dQno9nRc8CjNwz1vJy91OB68wcpPnHWfsZ3XXVdYfx/pcl58Q7/z2tej5JefD/uh7O9/LTgj+I3gicx79Hz83WBocHhwv+Ae9Fuqt2o/tun3ikNUbymv9Q4txDtRPlgPPPs2XH7A+0aBt1/h+QwjL/1TkPXR5cGf8Lz1fDYk4CdBr7smBccHO6te8lKH48EbpvzE2SDekdLjupquF627s/Q4Hn5NKsSzn+Plk8fdIcrPfT8K8h2Y78Lc91G7f1zv0UF/N6a+IYrH9Y/kM/XAdz54Vd+rm/ps3btKl+PBP1rx7PNQnkfw0uBlQfZZ95fPH0d3z8Q9PnhCsLS/O1TxuP6xfKYe+M7XdF/Z+qjX8ax7sHTBs08nyAf7fEB+4Ps739d/rrrGy+ctmS8F+R5/ivJZB3nI6zjwDlBe4mwpXt3zA3V9tv5TCvHsz/HSb585R0I7oR1cGWS/Yax89rkT2s1JwdL+xYGKx/WtxKt7zqXuvknd/sC6R0iX48E/SfE8fnJ+ge8OfFf4TvAHmgcwL+B+zjn4e8VhwdEa5z1/IC91OB68qnMWTb+j1J3f2I/DCvHs01Dph2dfR8svPx++Q/xzcFrwrODpwa8QT8+H7xV7BvcPHho8ILhXsKvqrfoOAo/64DsvvNGqt5R3mnS7fnhfkQ/WA+8s+Wcf4J0uf+2T+ynOWbGOZp18jfpF+knu4xyW192nql90P0oe8joOvKrzX033Aer289Z/aiGe/TlF+u0z3/n5jn+D2iXt9Evy2ecCpqm9+fsp9Y1QPK63ilf3HELVd1vHQ9+0Qry6/ZJ9Okw+4JO/47E+/nGQ73qbvsvmftbP44L+flj1XbDpOt/19FV+x4M/TvGs+8v5xVVBvrMdId0dc//JwdL3vC/rfq53LPDIe3KBV/c7ous/SPV6fGE/m/3qucHZeg95LzlPw/3eBz8zeLreM5+7od6qc31N99+rzvs0bWf25cxCXvs1TT7As7+ny7fApv6Pc2J85+Q75sXBm4I3B9l/ZL+SOJwr83fSicHpwTOCpf1N6qAux4VXdb4NXt3vuHX3X+3PxEI8+3WM9MOzz9PlGzw/hzPkq8czvl+wPmX9eWuQfUr2NbnP56NYr54VLO17Vp2zqvtdpen6uu6+rHUfJ13OC/8s5bXPfPecHjwneH7wh8Gvy2e+i34heERwbHBMsOl3VnjUA9/54Lm+YcoP7xzpdN3wzpcP1mUe+ceIZ59Z97CuuSh4YfB7wRny2eukY4MTgl8MDld9dfeT667LZqjOUt7vSZfrdF58OLaQ1z5NkA/2eYreB57Pz9TvzZTPPhfA85ys/sz9ZN3zBVXnbJq+z3X7ceufXIhnfyZKv31mP5x5FPOqx4J/Cl4un30ei3nXVcFrgpNUX9W5rqb79FXzQHjWMUl1Oh76ryrEsz/XSL/nn5yXYF+LfasVwbeCzJuYj3G/zxmx33Vr8F7Nrzxvqzq3BK/qXEfTfbq680r7cWshnn06U/rh2dd75ZfbAe2L8eCnwauD16r9cZ/Hi38JfjV4mtpf3XGnabv/qep3PfCulj7XC896J0uP48E/TfHsM/0/48EvgzcGfxG8Qj57vJga/FZwSvDEhuMOvAuVlzgTCvGoe2oh3hXSU6rPuqdIFzz79C354P6GfRDWaazD7lb96GEc537vn7B+O0d5S+N91f5v3X2bzzrPqHo+9mGq9DVd79rfc8RzO2DfhnUA8/wXgs8G2dfhPp/jYF0wJzg72HSfCF7VuRF4rm+c8jdd71j/nALP/syW/sAmvzmfxPqXdeujwXeDf2UcD7K/Sxyfb2Lde2VwfvA3wdJ+cNU5M3hV56ua7kPX3QewD6dKl+Ph45WFePZ5vnyD5+fwG/nq9sP8lvGJ8ecWxvsg+xXc5/kw49XM4HnB6aqval7ddB+l7vhqXTMLPOudLj3w7M950m+fGd+vD94Z/LXqulY+M/5/M/jvwf9QvqbzCXjUA9/5mvp3p3S6bnjWPVO6zCOu9Xu85ns252FYp7C+eCfIvJb58qb97cT1OSXWJfOCpXl11TkceFXf3eFVnZ9qui6ruz6wX/MK8eznrfLJ7YD5GfOvu4L3BG8LXqd24Pnc2cFzg98Ofk31/ULxuD5FvLrzx+tUZymv9Z1diHeb9FsPPPt0rnzweM25Gb6XMg4xLryteQLzBvZLieNzNx7H7tO8wfur1F91bgpe1bmfuvu68Kq+Gzcdr+vOr+zvHPnlvPDvU163H+bZzI9/H3xA7xvvH/d5Xn5x8CK9R03XS03XAXXbhfWcrXqdFx8uLuS1TxfJB/s8Jz/cHpwfvD+4IHiHfJ6ReN8Jnh+8MPij4HdVH3nI6zjw5igvcWaIN1/1ux54d0hPqb775YN1wVsgn6zbPjP+M87fF/xD8H+C98pnzxe+H7wkeEFh3lZ33lE1v4N3n+p3PfCs4zzV6Xjov6QQz/5cIP32mXbE+78w+BDju8YX7nO7uzx4WfAHGofrjldN2/k9qrOUd550uU7nxYfLC3nt02XywT7fpOfM8/lzkHXczfLZ6wye5w3B0rqw6jty03VN3fVo3ffZ+m8o8OzPldJvn2knvwsuDj4efELtiPtoRz8J/iz48+DVakfURx7yOk7T9rtY9bseeNZxieqE97h8sC7ziHu1eF5PsR/HdwK+A3wU/IvGX8Zj7vd5Fb4fPBi8WeOwx+2q8y919w2bfveoO6+w/oulC579ulk+uD74D6o+twP6JfqppcFlwSeDi9QO3I/NCl4fvDZ4RcP+EN5DykucywrxqHtWId4i6SnV96T0Ww88+3S9fLDPD+aHPwafCj4fXBJ8WD5fmnj/Gfxl8KbgdcH/Un3kIa/jwHtQeYlzqXhPqX7XA+9h6SnV97x8sC54S+STdbu/YVymPdFeXg6+pPeF94f7Pa+nnf0qeJues9+zqnVC0/lD3f6hbjuw/lnS5bz49qtCXvt6m/xyO2A8ZzxiHFkefE7jPfd5fsq4Mzd4o8b7uvPcpvOMuuOpdc0t8Kz3BumBZ39ulH63A8bpZ4Krgm8GV6o+6uV+xvP/Dt4dvCd4u/KX5hOleQI86oPvvE39XCXdrh+e9c+VLnj263b5YB757dff/X+G1W7eC74ffEXjC/e5vS4I/jZ4h8bhuuNV0/5hmeos5bW+BYV4r0i/9cCzT7+VD/b5OT1nnuPfIOSFXy+f3b547g8FHwkubNhO4a0v8Byv7ntqXQ8VeNb9iHTBsy8Lpds+v5gfXguuCW4Mrg2+Lp9vSbw7g/cH/xh8IPhr1Uce8joOvBeVlzi3iLdG9bseeK9LT6m+jfLBuuCtlU/W7f/fCc+Z/mZdcIOeP3z3V38I/m/hudft7+q+b+tUr+uAt0F6XKd5zgvP4yD7AYyvtDfe6+1D/Dj/5vs393sfwe10WXBRcL7qrdqXgFf3+3zd+ULd/sW650uP4+HXskI8+7lIPvl9ZnxgHrlFCFsF39P77Pnl4uBjGgfqzk+bjlOuc3EhnutfoDrhWe9j0uV+lnk56/stc1/XtpvHo07u837Bo8HlymcdddcBdfcn6vpnfY8W4ln3YumCZ5+Wywf3Gzw3nkv7YGtw6+BqzUe438/76eCS4OPB32n+Vnee0/Q9Iw71lvJyHX2u03nx5elC3q3lm/XDs79L5JvbAf0/40G73LddsAMPou3m93m8eCr4THCp5jl1x52m8yvqJa7rgWcdj6hOeOgmrnWZR9yl4tnnT+hHwu8Y7BLsFGwrnx9OvD8Fnwu+GHw++KTqIw95HQce18lLnIfFo17iuh54baWnVF8X+WBd8DrJJ+u2z+v13vB8dg72CG4vnz0v53m+HFyp8bfu/L7puF/3PbWulws8610mPfDsz0rp93yD/oX+pluwe3CHtpvz3Q+tCL4U/HPDfgxeq/IRZ0khHnWuKMTbQTpK9VnvS9LlcZBxlXGzT7Cv6qJOxgXu93j8VvBt5S2NH1Xzo6bzgLrjVl3f7ctbhbz2a4V8gGd/35Zvfp/5+6dRuTA6yLk6zuHB5++iurRP/cHS+byqv68yjzqIb17dc4HWAY964Vk318nvfpbxr3OwZ3B39Uv0U9zH+PhC8JXgm+pvSuNyabyFRz3wna9p/9lTOl03POt+WbocD/6biuf3kr8L4Pwa59PGh3iM+ln//QDn2HrmOfbSc6/6+wN45DHP8eqet7MO6jPPOskH3/0s/QLtvl+wf3AP4qj/5n73J6uDHwTfCb6q8avuuNC0H+uuekt5e0mf63RefFldyLuHfLN+ePb3A/nmfmNnvf8DgoODgzQP4T63pzXBdcEPP+O8pmn7dX0rld/x0LemEM/610kfPPvzofTbZ/qZ3sG9gwNV1+7ymX5oVfD94FrVZR3kIa/j1O3/4O2t+l1PU58HygfrMs/x4AU2+b1C4zDj5+Tg2CD7JuzHcL6EOD6vz/jbL9g96P2bpn8nDK/q7wXgVZ2DaTrPqLsfZd/gdVc8+91P8zF4fh7d5a/HEfZdWTfR3ml/hwYnBMdoHPF+rfuJdsm7S7Cb6q3a/4U3psBzvLrrwLr9m31Aj3n2Cb3tVJ997CZ//HyYP3Bun313fCDOScHxej4+3+/9evL313yDeqv+XqDpPKfq7wWbfmeo+17Yp/6F99E+9pQ/fj60W9rbxODI4L5B1mld9Xzc3ncLtg9uzPXSOrFqn7ppP1N3fWpd8DaKZx+43l557Vt7+WEd8LmODnxlndBH+T+veSHzRPjW0ZK4pflj1fq7qV91563WsVr1Oi/8Fr1Xnk/1E/+A4P7BIZoHc5/zbxncIviR1hd159VN9fZXnaW8Q6TLdTovPqDLee3TFvLBPjPvYh42LLhf8EDNl7nP87QNwU+CWyXfOumomu81nacPU/2uB551rFOd8PaTD9ZlHnGJA8/98yDl574RwaOC4zTOc7/XH+RrDXYO9iiM91XrmabzjLp+Wif1mmfd7aQHnv1C9/8DflemvHicnZx3sFXVGcVBQLhwH0elNxURQbGAPLrAo0jvxYZYGEcQhIB0RIoIQqISRWOJGo2KaGyJRmM0mtixV5DeRQSpooAKmQlrvZnzy91zz73558t7e33rW2udvfe53DdJ+Qol/vef0kdLiR5lj9Z+qjW1XllVvy5RRrWZftFOtaNqkWqrsnH8kfJHaznxpVXLq5aCnmbg8bp5jPN84znHuFbQF5rbEb6olzjypQN5tdAvWqp2Vu2k2hp5lRTPMaoVVQusA3rM6znsN64F5pmnZIDPOisG+FrDR0gf/RbAV0o451ao/9JB9QLVvtBlnc3LxvsPax9UEP/JqjUw135KQG8heL1+GPvP+oznXOOaQ29obtLcmYv9cS7zqogcjGO+NZBbOeGOVfW+9znorjpI9UJV3yvu4zmppHqial3cO0nPm3FFmGue8sB1h37qMW4Q/FGvcfRbGX7IZ3xd8PEcdMLz8/MZqnqZ6kWq5+Mc8Jz5uTZQbah6imqU47k1rhPmm6cAuKT78Xz4CuljHg0CfBchL/o2jrk2RF48Bz3wPK9UHak6Au9V93F/NFItVD1XtSb0ZXtP57ofqa8m5pPP/hoF+Oi/EP6MYz7nwj9z9rm5VPVq1eHQdSFy9rk6TbWxahPoyvWcGmc9xnNervldDZ/UbRx9N4Iv4sxL/8y5PfaDn8/vVW9XHYicU9ivfp6XqA5RrQN9nuO55DGuPeaaJwVc0v1MH3Wgk3z2f0mAj/kMgX/fx/5853vL791rVK/FfWY838dNVZvjfkr6Ps/1/qTOpgE+6m8AncbRb3P44r70553BqnNV50GXdbrPn4dOUu2r2g/z6MNzPJc8uX4Oo+6+Ab6kOdN3U/gyjjn1Qw7MeSiey2jVMarD8H50H59zC9WWqmfi80bS922u++oy6AzNHQZf1Mm5zqFFYC5zaokcmLPvbd/P41UnqE7Ee9R9vOfbqrZTbY/3aK7vi6Tv7/HQTz3G0UchdBo3ATnQF3HmbQ8ccx4l3FjVqaqzVKepjkPOzcTXWrWTag/VzqptoM9zPJc8xo3CXPM0A24q9FOPcePgJ6RvFnKgL+OmISf6Zs4j8Jz9fG5QXYj3qPv4uc/Ps6vqxXiPJv38mOv7O+k+pa+uARx9XwxfxjGXS+CbOfuemaQ6W3WG6mTcQ+7zPVSk2lO1m2oH3NdJ7zXirKsogBsDnaG59NcT+o2bDP/0Yxxz6oYcmLPfq35v3gx/9nstcuZ7uD90h94f2T4P5frez/W9le250X8R/FGf8f2hjzn7Pp+uOlP1RpyzicjZ930X1e6qvXDOQu+Z0PvDOOsxnvNyvQ9mwid1G0ffXeGLfMb3Ap9+Xfzvh576xRzVm1Qvd3/ZOL6KeHqr9lE9XbUq9PQEj9erBHDW0TuA6wV9obn0cTr0GkfffeCPefUBr/v8eXow8qqOfMwf+pzfBzxerw6c5xvPObn++yJpXvTbFzifQ97XPvfzcX8Xfz+Le2MA7uFc7/+k9xL19MR88hk/AHz0PQO87lsA33zfmHdgju8pzvUc83TL0zd1DwSOvn3/3Kp6G+6j4u/Z1X+h6kV53mfGeZ7x5DeOenphPvmMvwh89H0DeN23EL55b5v3YsxPet8n/TyZ1Dd1Xwwc78Pe3heq/p7rDtUrcB9WEw+/V7tU9QzoMa/nsN+43phnnmrAJf1+j/rPgE7yGX8p+JhXf/C6b5HvFeRVC7mYf6hqbejpDx6v1wLO843nHOOoqzbm55oX/Q4FjnnV1h++Oqm+HR2tC/TzoFQc/036aC0okG7VgaonFsT1kN995in+3j8Vx3udfNTp+QXAUf+J0Gkc/Q6EL95DzYV7K4r3W5dxJdTfH3zU6T7zlgjgONe8JfLMh/oHQC/3SRnx9lV9M4rzNMc++UTPr4b4DmTRXdyfivcTRx3m/wT7KWle9GOdNYCj3/7wxbyqireH6htRnKcv8lov/ZXF2xf81EN+961HDp5j/Ho8F+Oo0/Mr55kX/R4AL89VF/H+J4r398C5Ok79fZATdbrPvMcFcJxr3uPyzIf6+0Iv90kk3iLVf0dxni7YJyv0/MqLrzf4qZv87luBfeI5xnudfNTp+eXzzJV++8AX86oo3naqr0dxniLk9bV8lBNfL/BTN/nd9zXy8hzjv8ZzMY46Pb9cnrnSb2/4Yl41xHuO6mtRnKcd8tokHwdVe4Kfusnvvk3Iy3OM34TnYhx1ev7BAF+2XOnXOPPyHqov3n9F8X7rMm6X9PQAH3W6z7y70plxnGveXQG+bPlQv3E9AvvkRPH2VH01ivPUxz75VvOqiK87+Knb/Z7jfuKow/zf5pkX/VhnFewT+u0BX8yrvHj7q74SxXl6Iq8vpauW+HZn0eN+z/kynRlHHeb/Ms8c6Mc6awFHv93hi+eqmXj/GcX7++NcHZHuruDjfPeZ90g6M45zzXsE+ST1Tf27wRvy3U/15SjOQ981xdOlIM4b4qsZ8JPUN3V5bk3Mpe6u0MnzUUG8fVT/EcV5+uF8fCVd1cV3Pviph/zu+yrgz/ivkHPx98LQ6fnVgUuaF/12gS/uk8bifSmK9/fB+Tgk/Z3BR53uM++hdGYc55r3EHJMmg/1G9c5sE+qi3eA6otRnKcx9slG6aotvk7gp273e477iaMO828M8GXLi36sszbyot/O8MW8jhVvG9W/R3GeAcjrU+kqI76O4Kce8rvv04A/4z/FczGOOj2/DHBJ86LfTvDFc+X5XVVfiOI8xd8rqP941Q7gDfEdH/CT1Dd1dYAO46i7I3Ryn/yqP/ieIP7nozhPV+yTd/X8Vqt+m0UP+d33LvaJ5xjvdfJRp+evDvBly4t+jTMv8/pF+s4X/9+iOM8JyOsd6YrE2x781O1+z3knnRlHHeZ/J8CXLS/6sc4IedHvt8DzXNUU71+jeL/nGbdZetohJ853n3k3pzPjONe8m/P0Tf3GtQucq0ribaH6XBTnqYl9ska6SoqvLfip2/2e437iqMP8awJ82fKiH+ssibzotx18Ma8j2s/nif/ZKM7TAnktla5jxXce+KnH/Z6zNJ0ZRx3mX5pnDvRjnccCR79t4Yt5VRbvKarPRJiDvNZK/w5/75JFD/ndtxY5eI7xa/FcjKNOz98R4MuW1//5LYjzMq/54n1I9S3V36q+E8Xxh/TzSPHepjpI9Wd8LpgPHq8fCuCsw/zEUZf5BiEH+hgEvcbRt9dHBvbXzcLdo/oedM/H/joofcPEdwf46e9m8Hj9YABnHeYnLmmu9GOdw5AX/Y6EL77n5gn3CPRaf/G/C9U/GnPpZx76vd6vIDPOc81LXNIcqX8Y9HKfzBXudtUl0DMP++QnzRsivuvAT91zweP1n6LMOOsYEsAlzYt+rHMIcPQ7Gr6Y103C3a36EXTPRV4/Sv+V4rsbOujvJvB4/ccAzjrMT1zSXOljCPQaR99evzKQ1xzh3lZdDt03Ia/90rVQfA+Dn/7mgMfr+wM46zA/cUlzpY8rodc4+vb6wkBeNwp3i9/H0D0Hef0gXReIbwn46e9G8Hj9hwDOOsxPXNJc6cc6L0Be9LsQvnhvz/bnf+i1fuP2Sc90zKWf2ej3+r4AznPNS1zSHKnfuOkB37OEexo6ZsP3Xs2ZDD7qnIV+r+8N4DzXvMQlzYf6jZscOB8zhVuk+gb0WJ/xezRvqPhuAT91zwSP1/cEcNZhfuKS5kU/1jkU54N+J8MX85rhe0f1c+ieiby6iWeU6v3QQX8zwOP1bgWZcdZhfuKS5kofQ6HXOPq+H/6Y1w3CPaW6DLpnIK9d0jVJfA+Bn/5uAI/Xd0WZcdYxKYBLmit9jIJe4+jb657Pe2i6cM9Br/Ubt1O6p4GPfqaj3+s7AzjPNS9xSXOkfuOmBfbJ9cL9TvVj6JmOffK95g0W3z3gp+7rweP17wM46zA/cUnzoh/rHIx9Qr/T4It5TRPuQdVPoft65LVDukaI7z7ooL9p4PH6jgDOOsxPXNJc6WMw9BpH314fEThXU4VbDL3Wb9x26RkLPvqZin6vbw/gPNe8xCXNkfqNGxvYJ1OEe1J1M/RMxT75TvMmiO8Z8FP3FPB4/bsAzjrMT1zSvOhjLPQaR99enxDIa7JwL6quge4pyGubdM0S3+Pgp7/J4PH6tgDOOsxPXNJc6WMC9BpH316fFThXk4T7C/Rav3FF6p8IPvqZhH6vFxVkxnmueYlLmiP1z4Je7pOJ3k+qW6BnEvbJVs2bIr5nwU/dE8Hj9a1RZpx1TAngkuZFHxOht/j7Zvj2+pTAPpkg3F3QOxH75Bvpvhx89DMB/V7/JoDzXPMSlzRH6jfu8sA+GS/cA6qboGcC9skWzRsuvqfBT93jweP1LQGcdZifuKR50cfl0GscfXt9eCCv64R7SfVN6B6PvDZL12zx3Qp++rsOPF7fHMBZh/mJS5orfQyHXuPo2+ueb9+lVMdBp3V7vQ36qX8c+rzepiAzjnkQly033gv+O9jZfo/7fEGn/y52QLW1eDcBR74D+Dsfcdn+/kZdnnsAOOo2n/H0/bTWX1Pfq6rO2biNws0Xz7xA7uZzv9c3Rplxnjs/gKOeNphvHPV7fX5gv7YX7jfI1esp9bVSbY157DcuBZx5jU8F+KijNebz///hZ/3iVL8noziP552Zive9rf2yU3V9lFn/j9hXnOf+t4HzPOO9Tj7qto6dwNGHeZhz0ufBnIzzfP26+H3wlH5/nxZeUV2vulLV+8/72v0b9PNVmjNX9UnVR7FPuf8937xe3xDAWafnEZf03NGvdV+FPJnHk/BpHHOaD//GMddHkRfP8ZhUXK9z8HpL6GYeY9Dn9ZYFmXHMl7hsz4H3r89BI9XROBfF37Np3+9XbYF9G+Lbj/Oe6/mjLs/dDxx1m894+n5S66+r72VV52zcOuEWiGdOIHfzud/r66LMOM9dEMBRT0vMN476vb4gsF9PF+5a5Or1fcq1ufpbYB77jdsXeB7G78O+MY46vG5efi6uJ1wT1VHQ43nF349q7s+qzcBP3e73HPcTRx3m/z7Aly0v+rHOn4GjX/M1C+RV2vtHdSTmNEFeH2veMeIrBD/1uN9zPk5nxlGH+T/OMwf6sc5jsL/otxl8Ma+0cN1Vr8GclshrmXRVEl9T8FOP+z1nWTozjjrMvyzPHOjHOisBR7+F8MV79DThRoDf84zbLd3ngo/z3Wfe3enMOM41727kk9Q39RtnXn7+PaxfnCz8cOixPn+gc9970vedahPMsf734cM8nvteAEddnvMecNRnHuZHf9b7XYAv2/NgTsY1Cewvz2+tejX0GFesRzyNwRviKx3wk9Q3dXluacyl7ibQyXuonPeh6p+jOI/nGv+5dP2qeg74qYf87vs84M/4z5GzcdTp+b/mmRf9GndOIK+SwnVWfTiK8zRFXh9IV0XxnQ1+6na/53yQzoyjDvN/EODLlhf9WGdF5EW/58AXz1VD8T4Uxfs741ztlZ6zwMf57jPv3nRmHOead2+evqnfuLOy+G6l+qcozkPfpcRzJnhDfKUCfpL6pi7PLYW51H0WdPJ8lBVvN9UHozhPK5yPz6TrBPE1Aj/1uN9zPktnxlGH+T/LMwf6sc4TgKPfM+GLeRWIt47qA1GcpxvyWi79W1XPAD/1kN99y5GD5xi/HM/FOOr0/K0Bvmx50a9xZwTySom3rur9UZynDvL6Qrq2q54Ofup2v+d8kc6Mow7zfxHgy5YX/VjnduDo13zG8x4yb6HqH6M4j3Gec1i1IXhDfIeRb65+qMtzDwNH3eZrGNgnx4m3l+p9UZynEPtkpeZVFV8D8FOP+z1nZTozjjrMvzLPHOjHOqviOdFvQ/hiXseLt63qvf5+L4rPNX6VdJUV32ngpx7yu29VwJ/xq/BcjKNOzy8LXNK86LcBfDGvKuJtoHpPFOdpi7zWycce1frkhx7yu28d8vIc49fhuRhHnZ6/J8CXLVf6Nc68vIc8v4Pq3VGcxzjrqSCeU8Eb4qsQ8JPUN3V5bgXMpe760Ml9cox4a6n+IYrzdMA++VC6tqjWAz/1kN99Hwb8Gf8hcjaOOj1/S5550a9x9QJ5lRJvb9W7ojhPLeT1kXRVE98p4Kdu93vOR+nMOOow/0cBvmx50Y91VkNe9FsPvphXNfGeq3pnFOfpjbw2SNcvqnXBTz3kd9+GgD/jN+C5GEednv9LnnnRr3Hm5T3k+R1VF0VxHuOsJy2ek8Eb4ksH/CT1TV2em8Zc6q4LndwnJ4l3oOpgzOmIfbJNuuqI7yTwU4/7PWdbOjOOOsy/Lc8c6Mc66wBHvyfDF/N6QrgX1Pe+qv8O5r+vFf/v2/XzDPHdqRr6u5v5zeP1tQGcdZifuKR/76Mf65yBvOh3AXwxryWa86g/h6Ti855AXmv8d0zxPQEd9Gf+J5DTmgDOOsxPXNJc6cc6xyAv+p0BX8zrcd/zwn+Zis9bgrxW6+crxPcgdNCf+Zcgp9UBnHWYn7ikudKPdV6BvOh3DHzx3l6sOc/6fZuK6zdulX6eirn0Y77HkcuqAM5zzUtc0hyp3zjz8u8/j6l/qfCfqK5Oxfms030r9fMi8d6ruhjz6MPzFiOPlQGcdXkOcUnzo5+p0Gscc7CvRcAxp8XIgfvrUem5NRWf8xh0rtDPF2IufZvvMeS3IoDzXPMSlzRv6jfOvLyHHlH/8/73tup/ARtONDh4nJ2ca7BW5XmGMSQc1LAB007+aJIWkM7U1ESxJtImGjSxiUbHVk4bMCAolDExzLRVREajIihpRNNRDuoE8JA6owgoJ9FUFBHDSYMCWm1m2tpUAUnHqLRDZ8p9rZl94du1WP65x1nX89z387K+j29/z2bN7d3t//5b0nFYP3VYur2W/5/x6cO6NDo8uivXPxl+cUfXPlx/rcAt7921vzn6zO39//vu6f3xHHnh8IPnOv49wzH/xHCrov/Su2ufxTqvV/P/N6bfP6q/55uoPlx/tcCRg/7mmp6r55ihvHCem+s3Fs7r8nAro88rN3PA70yumen3E/X3fJerD9d3Fjhy0N9c03P1POScqfPyvDdqrh7duvITwv1YeckP96vkGSFfzzNB9Vz/VYHDl77mmp6j88ONKNwn48PNi76mPBN0n7wSv870+5n6O/d49eH6KwWOHPQ31/S8PMcI5YXz3FzvLJzX98I9HN2o3ON1Xi8n17T0u0P9Pd/31IfrLxc4ctDfXNNz9Rydygvnubk+rfC6uozXqfKSH25H8oxSP89zmeq5vqPA4Utfc03P0fnhRhXuk3HhFpBTeS7TfbI9fhPTb5H6O/c49eH69gJHDvqba3penmOU8sJ5bq5PLJzX2HDLeJ9Q7nE6r23JNT397lN/zzdWfbi+rcCRg/7mmp6r55iovHCem+vTC6+rMeGeUV7yw21Nnjnq53nGqJ7rWwscvvQ11/QcnR9uTuE+6Qy3MPoL5Rmj+2RL/Cal323q79yd6sP1LQWOHPQ31/S8PA85J+k+8bxzNJfPa3S4e6K7lLtT5/XL5JqQfouVw/ONVh+u/7LAkYP+5pqeq+ch5wSdl+edpLl8XqPCPRh9SblH67xeSq6r0+8flMPzjVIfrr9U4MhBf3NNz9VzTFBeOM/Ndfz9PjSSz03KS364zckzVf08z0jVc31zgcOXvuaanqPzw00t3Ccjwt0V3aw8I3WfvBi/sen3U/V37hHqw/UXCxw56G+u6Xl5HnKO1X3ieadqLp/X8HBLo79W7hE6r03J9f30e0Q5PN9w9eH6pgJHDvqba3qunmOs8sJ5bq5/v/C6ujTc3ysv+eFeSJ6R6ud5LlU9118ocPjS11zTc3R+uJGF+2Re6u/jc5ryXKr7ZGP4yem3QP2dm/704frGAkcO+ptrel6eY6TywnluruPP3N2jV4dbF32qd9frZ6Xulugs+VFHH/NwTxW4Uj/4WerXK1wP8euju6PvRveqH3X0uzW6JPpkdFXLfHDrda72g3O+WfKH2605ndsc8z9Z4Hw+qzS/X1fwv3/sYT05OvjYrn3g6fNW9L3ogcJ8dXnMkeOtAudcq+QP53neU244z3tAc/n9F/7M6FdUD0f9J/oc1u59Pj5nnX/Jl77mnId++MM5P9fp6/sE/mvR86LfVB94+vSO9o3203k0zWOOHL0LnHN1lz+c5+mr3HCet5/m8n0C3xkdo3o46gdFTy7krPMv+Q4qcM7TT/7Vz13Kf7Lyem74KdG/Vj0c9adHh7T0L/meXuCc52T5wzn/EOX16wP+h9FroteqDzx9hka/ER3WMo85cgwtcM41RP5wnucbyg3neYdpLt8n8DdHb1E9HPXfjV5UyFnnX/L9boFznmHyh3P+i5TXn2vgZ0fnRu+M3qV+1NHvkujw6Jjo2Jb5zJHrkgLnfBfJH87zDVd+OM8/RvPB+XzGan7fX/D3Ru9TffU+mPoro5ML89T5l3yvLHDOM1b+cM4/WXl9f8E/EH04+nh0ufpRR78fRKdFr4vOaJnPHLl+UOCcb7L84TzfNOWH8/zXaT44n88Mze/7C/6Z6C9UD0f9nOhthXnq/Eu+cwqc88yQf/U9u/Lfpry+v+BfiG6Kbo/uUD/q6Dcvemd0QXRhy3zmyDWvwDnfbfKvvj/RfHcqP5znX6D5qp/zdT4LNb/vL/jXo2+oHo76B6IPFuap8y/5PlDgnGeh/OGc/0Hl9eco+Dejb0f/Q33g6fNw9PHo8pZ5zJHj4QLnXA/KH87zPK7ccJ53uebyfQK/P/qe6qv3jdSvia4t5KzzL/muKXDOs1z+cM6/Vnk9N/zB6H+rHo7656LPt/Qv+T5X4JxnrfzhnP955fXc8D2OO6w9j+taD0f9tuj2lv4l320Fznmelz+c829XXs8N3y/aX/Vw1O+Jvt7Sv+S7p8A5z3b5wzn/68rrueEHRAeqHo76vdF9Lf1LvnsLnPO8Ln8459+nvJ4b/ovRP1F99T1r6j+IftjSv+T7QYFznn3yh3P+D5XXf//BD4meFR2qPvD0ORT9VPYLPTra5TFHjkMFzrno10N7Ds9DzkPq53npU83V7eP5YdFzVQ9HfZ9oh86pqX/Jt0+Bc54e8odz/g7l9X0C/xfRv4peqj7w9PlM9HPRz7fMY44cnylwztUhfzjP8znlhvO8n9dcpX0Y+5gnC/sw9jQ36Hv1q1XH9bPENd2HOccN4vzn/ZT2KPuiz6oPvPdNq6NzC/PV5anebxvutZ5UvpKv55irvPaFXy1fnxc8e5A/in6kPvDeI/02uqFlHrim+yrnWi1/OM+xQXntC/9b+fq84NmXfDX6JfWBP2KvFD3YMg9c0/2Vc9HvoPp5juq6+nlurncvfD6BZ3/yLdd361rPfqW/zqupP1zTvdYReeyvfvD91c/3CTz7k7HRC9UH3nulwdHPtsxTfW+r8y/tr5yrv/zhPMdnlde+8IPl6/OCZ88yNTpBfeC9jzojekrLPHBN917ONVj+cJ7jFOW1L/wZ8vXrCp69y3TVV58nU89e5tyW/nBN92HOc4b83Q/+XPXz96rw7FVmRW+IXqd+1HkvdXH029HzWuaDa7oHc75z5Q/nec5TXjjP/23N53zwFyuf7y949i4/VT2c91rjWvrDNd2bOc/F8nc/+HHq5/chePYq90fvVp/q312kD/uXKdHxLfPANd17Odc4+cN5jvHKa1/4KfL1fQLP/mSF6uG8n7q+pT9c0/2X80yRv/vBX69+vk/g2Y/8U3Sl+sB7r3R7dGbLPHBN91fOdb384TzHTOW1L/zt8vV5wbMHeTm6UX3gvW9aFL2jZR64pnst57pd/nCe4w7ltS/8Ivn6vODZl/xzdKf6wHuv9FD0/pZ54Jrur5xrkfzhPMf9ymtf+Ifk6/OCZ3/ym+i/qg+8908roo+2zAPXdM/lXA/JH85zPKq89oVfIV+/b8Ozdzmg+up9KPXsZda19IdruudynhXydz/4dern+wSevcv/RN9XH3jvozZGn2mZB67p3su51skfznM8o7z2hd8oX58XPPuaXnzPrT7w3mPtiG5qmQeu6b7MuTbKH85zbFJe+8LvkK/PC549zwnR49Wn+nfL6cM+6I3ozpZ54Jru2Zxrh/zhPMdO5bUv/Bvy9XnBsx8aFD1Jfarfe0gf9kj7o2+3zAPXdD/nXG/IH85zvK289oXfL1+/b8OzRzpV9dX3xalnz/RRS3+4pns859kvf/eD/0j9fJ/Asx/6s+iX1Afe+7We0YMt88A13eM5F/0Oqp/n4HpP9fPcPbWX83nBs0c6L/rn6gPvfVvfaC+dX9M8R7vXc66e8ofzHL2U177wfeXr84JnTzY8er76wHsv94XoCS3zwDXd/zlXX/nDeY4TlNe+8F+Qr/eEV7F/ia7RnvDM7A9+FL1J+wbq6GMebk2BK/WDv0n9/D0i/NP8e9fob6L/qX7U0W929K7oiujKlvngnta52g/O+W6SP9yLmtO5zTH/igLn81mp+f26gu+Vz1kDogOP7doHnj47onuj+wrz1eUxR44dBc65Vsq/+vyoefYqN5zn3ae5jvh9nnBDomeoHo76Q9Fu/L19lP4l30MFznn2yb/aOyg/1w8V7hP4odFh0XPVB54+PdK3T7SjT7s85sjRo8A5Vzf5V39Pah5y9hDneTs01xG/1xLukuio6Gj1qX6vJX1OjA6IDizkrstjjhwnFjjn6pA/nOcZoNxwnneg5jriuSThJkWvjE5WH3j6nBr9cvS0Qu66PObIcWqBc66B8ofzPF9WbjjPe5rm8vsQ/N9E/1b1cNR/PXp2IWedf8n36wXOeU6TP5zzn628vk/gZ0ZvjP5IfeDpc370O9ELWuYxR47zC5xznS1/OM/zHeWG87wXaC6fF/yPoz+J3qE+8PQZER0VHV3IXZfHHDlGFDjnukD+cJ5nlHLDed7RmsuvK/gF0YWqr94nUj8xOqmQs86/5DuxwDnPaPnDOf8k5fV9Av+z6KPRx9Snel5t+kyNXhO9tmUec+SYWuCca5L84TzPNcoN53mv1Vw+L/h10aei69UHnj63RGdFby3krstjjhy3FDjnulb+cJ5nlnLDed5bNZdfV/BboltVD0f93dF7Cjnr/Eu+dxc457lV/nDOf4/y+j6BfyW6K7pbfeDpc290cXRJyzzmyHFvgXOue+QP53kWKzec512iuXxe8L+O/lv039UHnj6PRB+LLivkrstjjhyPFDjnWiJ/OM/zmHLDed5lmsuvK/i90X2qr94vU78qurqQs86/5LuqwDnPMvlXPy8r/2rlPeL3osP9V/TD6EfqU/1edPqsjz4b3dAyjzlyrC9wzrVa/nCe51nlhvO8GzSXzwv+GPYQfF/K9986L/psjm6Jbi3krstjjhybC5xzbZA/nOfZotxwnner5vJ5wX+a73n5Hld9qvf59Hk1uiu6u5C7Lo85crxa4Jxrq/zhPM8u5YbzvLs1l9+H4P8g+oeqr95XU/9O9N1Czjr/ku87Bc55dssfzvnfVV7fJ/CDo38cPUV94OlzIPp+9Hct85gjx4EC51zvyh/O87yv3HCe93eay/cJ/JnRr6gejvpPZL/RvePjc9b5l3zpa8556Ndd+xjn5zp9PTf82dFzVA9H/XHR4zV/U/+S73EFznm6yx/O+Y9XXr8+4L8VvST6l+oDT5/+0ROjJ7XMY44c/Quccx0vfzjPc6JyV9+Xat6TNJfvk6u0N1obna/nonrPdnP0cn0PfpXquX6muKZ7vPnKVfJ1/pvVz/fJGu2J3om+pT7w3qc9Ef25zqNpHrime7u1ylfy9Rw/V177wj8hX58XPHueQdHfO7ZrH3jvyfZH32yZB67pPs65npA/nOd4U3ntC79fvkf8Xk449kF/qvrq5xXty47p084fruk+znnod4w45+d6t8LnE3j2OjxX8WvqA+89mZ8jebR54Jru45zrGPmbq3vepefuK1/fJ/DsdTpVX33uTD17n9LzKev84Zru35o+F9P5B6mf54ZnXzNF9dV9n3r2OaXnU9b5wzXdozV9Lqbzn65+fn3As5/5u+gP1Qfee6xzoqXnU9blgWu6L2v6XEzPMVR57Qt/jnx9n8Czn7lJ9dXnrdSzv7mwpT9c0z2a85wjf/eDv1D9/PtI8Oxd5kV57uNs9aPO+6vOqJ8jebT54Jruy5zvQvmbq3vepecfrvmcD75T+Xx/wbPXWaT66v0l9ex9rmjpD9d0r+Y8nfJ3P/gr1M/3Fzz7mWVRnvv4gPpR573X9KifI3m0+arvjfXnUdqzOd8V8jdX97xLzz9N8zkf/HTl8/0Fz57nadXDeT82u6U/XNP9m/NMl7/7wc9WP99f8Ox1tkV57uML6ked92Dzo36O5NHmg2u6d3O+2fI3V/e8S89/p+ZzPvj5yuf7C5590B7Vw3mvtrSlP1zTvZ3zzJe/+8EvVT9/joJnz8NzFd9UH3jvyfwcyaPNA9d0H+dcS+Vvru55l577cfn6PoFnH7Rf9dX7YOrZF5WeT1nnX/18qz+n0j6u6XMxnX+N+nluePY6B1UP5/1Y6fmUdf5wTfdvTZ+L6fzPqZ/nrvZr/DsL/j2J5vaeq/R8yjp/uKZ7tKbPxXT+bernueHZu/RTffU+l3r2MqXnU9b5wzXdhzV9Lqbz71E/zw3PnmWA6qv3tdSzhyk9n7LOH67pnqvpczGdf6/6eW549idfVD2c906l51PW+cM13Ws1fS6m83+gfv77D579yVejQ9QH/oi9kp4j6edT1uWBa7q/avpcTM9RPedS/Tz3J7W34j75X1BPKdx4nJ2dWaxW5RWGTbQyyKm2mjQRpMZSBQcE2sZoUhG4MHVKS2kvWhlFnBgVUXFAkNlZmcRqRQWnVtEqs4oVsIOK2sYqUFITFdMqoqBYcOgF6/mT8+Dq/s7uzZvAs9b7rt3975+zV8/X/fbZ858TD9ijvUP7hJ4Uul9w+x64R9uFNoXud2Bz7kTXH9i8Hg4/ePeH2yuP/dUPvkn9WgX3DfH9Qn8Repr6wNOnY+h3Qw+pmQeun66/feCcq0n+5pjHOe1rDt/992nOz48L+FDow6F3tmrODY1+l4SODT1X9xN19B2acPal71BxznOu/OGcf6zyem74J0OfUj0c9deETqjpn/lek3DOM1b+cM4/QXk9N/wzoc+qHo766aEzavpnvtMTznkmyB/O+Wcor+eGfzH0JdXDUT8ndG5N/8x3TsI5zwz5wzn/XOX13PCbQv+pejjqF4U+UNM/812UcM4zV/5wzv+A8npu+C2h76kejvrHQ5+o6Z/5Pp5wzvOA/OGc/wnl9dzw20I/Uj0c9StCV9b0z3xXJJzzPCF/OOdfqbyeG3536Oeqh6N+bei6mv6Z79qEc56V8odz/nXK67nh92+9R1u1bl4PR/0roa/W9M98X0k451knfzjnf1V5PTf8QaHfUj0c9RtCN9b0z3w3JJzzvCp/OOffqLyeG75D6GGqh6P+3dAtNf0z33cTznk2yh/O+bcor+eG7xzaRfVw1H8cur2mf+b7ccI5zxb5wzn/duX13PA9Qn+gejjqPw/9oqZ/5vt5wjnPdvnDOf8Xyuu54XuF9lZ947ka9Qe026Pt2tXzz3zpa8556Ic/nPPz9/T13PB9Q3+uejjqO4QepvlL/TPfDgnnPO3kD+f8hymv54bvHzpA9Y3PY9QfFdq5pn/me1TCOc9h8odz/s7K67nhh4Wep3o46ruFdq/pn/l2Szjn6Sx/OOfvrryeG35c6GWqh6P+lNBeNf0z31MSznm6yx/O+Xspr+eGnxR6nerhqD8j9Mya/pnvGQnnPL3kD+f8Zyqv38vBTw+dHTpHfeDp0zd0YOigmnnMkaNvwjnXmfJvvC/QPAOVG87zDtJcvk/gF4YuUj0c9aNCRyc5q/wz31EJ5zyD5A/n/KOVN/64MT/84tCnQp8JfVb9qKPf+NAJodNDZ9TMZ45c4xPO+UbLH87zTVD+xntAzT9d8zXeM+n6zND8e70PC25r6Ieqb9zfUb8sdHkyT5V/5rss4ZxnhvzhnH+58vr+gt8Vujv02DZ79Lg2zftRR781oWtDPw3dWTOfOXKtSTjnWy5/OM+3VvnhmNvcpwmH/05xvr/ge4aOVj0c9W2a9uhJTV8/T5U/HH7w7g/nPPQ7KeHo65z+nmNPwXv7R0IXhv6mVXPe+4xLQ0eFDtPPHdR7H2KudG/iXMPkD+c5RimvfeEvla+vFzzv+5eEPqY+8N6DXBt6Rc08jeds4b7FuS6VP5znuEJ57Qt/rXz9uYJnT7Ba9XDem8ys6d/4XivcyzjPtfJ3P/iZ6uf7BJ49wcu8b1UfeO9P5oXeXDMPXOmexrlmyh/Oc9ysvPaFnydfXy949gubQ99QH3jvXR4MvbdmHrjS/Y5zzZM/nOe4V3ntC/+gfP25gmcv8bbq4bynebSmP1zpHsh5HpS/+8E/qn6eG569xMeqh/OeZlVNf7jSPZDzPCp/94NfpX7+fMCzl/gi9FP1gfe+5oXQ1TXzNN5fFu6FnGuV/OE8x2rltS/8C/L19YJnn9E6dN/WzfvAe8/zWuhLNfPAle6TnOsF+cN5jpeU177wr8nXnyt49iDfVj2c90KbavrDle6dnOc1+bsf/Cb1830Czx6kY+gh6gPv/dB7oZtr5oEr3UM51yb5w3mOzcprX/j35OvrBc/+5OjQTuoD773SjtCtNfPAle6vnOs9+cN5jq3Ka1/4HfL15wqevcsPVQ/nPdSXNf3hSvdczrND/u4H/6X6+T6BZ+/SJ/RH6gPvfVRT6Fc188CV7r2ci35fqZ/n4O+b1M9z8/f4+nrBs6/pF/oT9Wn870CjD3udjqEH6/qV5oEr3Zc5V5P84TzHwcprX/iO8vX1gmfPMzD0V+rTeG5FH/ZBXUI71cwDV7pnc66O8m+8H9ccnZTXvvBd5OvnEDz7ofNVD+d9WY+a/nCl+zjn6SJ/94PvoX6+T+DZD10eOkJ94L036x16Qs08cKX7OefqIX84z3GC8toXvrd8fb3g2SNNDr1afeC9bzsr9NSaeeBK93rO1Vv+cJ7jVOW1L/xZ8vXnCp690lzVw3kfN7imP1zpvs95zpK/+8EPVj/fJ/DsjR4Ina8+8N63jQkdWjMPXOlez7kGy7/xvkRzDFVe+8KPka+vFzz7odWhD6kPvPdwM0MvqZmn8d5Q/71l+z7nGiP/xvtTzXGJ8toXfqZ893p/Ghx7o22hb6lP4/1p9GG/tCL0kZp54Er3es41U/5wnuMR5bUv/Ar5xh83nkfw7Ie6hh4Rekib5v2o8z7us9D3QzfXzAdXuv9zvhXyN8dczgl3hK6D53I+c+Tj/tpX/GjV8ffey33WQj+40n1fV+Wxrz9X8+IPFvH+lvezoXfovdiQ+PlmdOiY0ItDz9HPR9TjMyThnIP+Q8Q51znybzz/NM8Y5W483zXvxZrL1wt+Me99Q/+gPvD0GR96VejVSe6qPObIMT7hnOti+cN5nquUu/EeXfNerbn87yH4VaFPqx6O+qmh05KcVf6Z79SEc56r5Q/n/NOU1/cJ/LrQv4T+VX3g6XNL6KzQ2TXzmCPHLQnnXNPkD+d5Zik3nOedrbl8veDXh24I3ag+8PS5I/T+0IVJ7qo85shxR8I512z5w3me+5UbzvMu1Fz+XMG/E/qu6uGofyx0cZKzyj/zfSzhnGeh/OGcf7Hy+j6B/3fo1tAP1QeePk+GLgtdXjOPOXI8mXDOtVj+cJ5nmXLDed7lmsvXC35n6H9Dd6kPPH2eC30+dE2SuyqPOXI8l3DOtVz+cJ7neeWG87xrNJc/V/D78fNE6+b1cNS/HLo+yVnln/m+nHDOs0b+cM6/Xnl9n8C3C/1m6IHqA0+f10PfCH2zZh5z5Hg94ZxrvfzhPM8byg3ned/UXL5e8N8JPTS0va/bPs37vBX6dug7Se6qPObI8VbCOdeb8ofzPG8rN5znfUdz+XMFf2ToUaqHo35b6EdJzir/zHdbwjnPO/KHc/6PlNf3Cfxxod1Cu6sPPH12hu4K3V0zjzly7Ew45/pI/o2fWzXPLuWG87y7NZevF/yPQ3uGnqI+8I0+8fNtm9C27b4+d1Uec+Sgvznnol9b/fzuecjZSpznbau5/LmC/2noz1QPR/2hoe11nUr9M99DE8552sofzvnbK6/vE/hfhv469Gz1gafP4aHfDz2yZh5z5Dg84ZyrvfzhPM/3lRvO8x6puXy94IeEDg09V33g6XNsaNfQ45PcVXnMkePYhHOuI+UP53m6Kjec5z1ec/lzBT829FLVN963Rf3JoT2TnFX+me/JCec8x8sfzvl7Kq/vE/grQq8Nnag+8PTpE3pa6Ok185gjR5+Ec66e8ofzPKcpN5znPV1z+XrBzwy9LfR29YGnT7/Qs0P7J7mr8pgjR7+Ec67T5Q/nec5WbjjP219z+XrBLwi9N/Q+9YGnz0Whw0NHJLmr8pgjx0UJ51z95Q/neYYrN5znHaG5/ByCXxm6SvVw1E8JnZrkrPLPfKcknPOMkD+c809VXt8n8BtD/xP6vvrA02dh6FOhS2rmMUeOhQnnXFPl33hvqHmeUm44z7tEc/l6wX8v9j5dQo9mL6brRZ8PQreH7khyV+UxR44PEs65lsgfjjncb3vC0XeHOO/t4Eeojr+n7oSm/58r84Nz/x3qa46+9vdzgf0Xex3O5Zuv91Tej2XnFFLnvZq50v1b6fmIzn+J+nluePY1T6oeznuu7JzCKn+40j1a6fmIzn+N+nluePYzz6gezvur7JzCKn+40v1Y6fmIzj9d/Tw3PHuWF1UP531Vdk5hlT9c6T6s9HxE55+jfp4bnv3JJtXDee+UnVNY5d/4firca5Wej+j8i9TPc8OzL9miejjvk7JzCqv84Ur3VaXnIzr/4+rnueHZe2xTPZz3R9k5hVX+cKX7qdLzEZ1/hfp5bnj2GbtVD+c9UHZOYZU/XOmeqfR8ROdfq36eG579Befy7dbc3u9k5xRW+cOV7o9Kz0d0/lfUz3PDs4c4SPVw3udk5xRW+cOV7otKz0d0/g3q57nh2S90UD2c9zLZOYVV/nCle5/S8xGd/13189zw7BM6qx7O+5bsnMIqf7jSfU7p+YjO/7H6eW549gI9VA/n/Up2TmGVP1zp/qb0fETn/1z9PDc87/t7qb7xfIl69gHZOYVV/nCle5jS8xGdH45+nhue9/t9VQ/n/Ud2TmGVP1zpfqX0fETn76B+nhue9/T9Vd/43EY97/Gzcwqr/OFK9yml5yM6/1Hq57nhef8+TPVw3ltk5xRW+cOV7kVKz0d0/m7q57nhed8+TvVw3kdk5xRW+cOV7jtKz0d0/lPUz3PD8958kurhvH/Izims8ocr3W+Uno/o/Geon98rwvP+e1bodPWB9z5hQGh2TmFVHrjSvUXp+Yieo6/y2hd+gHx9n8DzPvx+1Tc+n3o/P7KmP1zpnsJ5Bsjf/eBHql/8cWN+eN5/Px3K+X+L1Y867wumhfo8wZbmgyvdTzjfSPmbqzr30PNP0HzOBz9N+Xx/wfPe/APVw3n/sLSmP1zpfsN5psnf/eCXql+8Bm88j+B5j35MaCed/7dLfan3fuGT0K2hPl+wpXnhSvcazrlU/uaqzkHk77kenguuk66fr4PnMMcc3qccrX3KMdqneO/xSQv94Er3Kccoj339PTcr/uBvoX8PXcl70FbN+QHx88JdoXeHTgkdqJ8nqMdnQMI5B/0HiHOugfKH8xxTlBfOc9+t+fx5nK2+/wp9NXRZ6P28b27VvN55Hw69M3RS6MjQQco7J5nfXOl1cs5B8ofzXCOVF87XYZLmcz6u38NJPl/fO3XdfD/PUc7fh94XOlf3s+e9LHRE6GDlmZtcL3Ol19W5BssfznOMUF77wl8mX3+vzlVffn+Q30uEc67s9xTnJfOYK5279PcjnX+0+nluzk3lXNR7ee5obp+rOjz0PPlT5/NYzZWe2+o858nf/eCHq58/H3eJ/13oozz/9Pmw77jQy0PPV567k9zmSudzrvPl737MMy7p53kv11y+Xr9lTxL6Suhzoffoel0Qfa4LnR96feiFykM9PhcknHPQ/wJxznWh/OE8z3zlhvO812suX697xL8e+o/QBbpezndP6ILQi5RnQTKfudLr4FwXyd/9mOeepN9e82ou//zIfcvnmPOJOX/4cd3X1Plz7vOMr9R9Xfq8aOnnqfR86dLzlz3vOM3jfvBXqt9eP6fre3FpKL//ze+VL9J19vfsxFD/3rl/v77q+6il3+st/b3+qt+P93WYmPj6Oo3XdfC/j3lO83xdEfqn0D/rOcZzjXo/3yeH3hZ6u55Tfv7Rz98X5kq/V0qfu553ctLP81+nueB83W7T9YDzdb1d18ufA/59yL/PXwj9o+4H7g/q/O/9W0Nv0P3Q0n+PtvTni9L71vNMVF77ch1uTXx9nW7QdfD3IM8vnk/P6/7gfoH3c+5G/fft+6jq3zEtfZ6W3r+e58akn+edrLn83OB5zvnznL/O+epr5EsO6n1Ov89tv0n+Lf0+gSv9/wcovU6l5+6Xnkvv63Sj5nc/+JvUz88Nnv98nvgccC4G521w/gh1/r7gc+PzOHw+Sem5LFXfT3Cl56KUPjdKzxfxdbpF/bjO/wMS9EmqeJydm3v01/MdxyOqjW3WWNg5c51zFm07k7u2c0aW3TCK2Nkll7nsSqgpLBlTKhUq3WVKRVQ0EZVVKmwIM9ewEbWbCmfYH54P53jsvPd9f/jn6fR9fl7v1/P5eb9f79fn/fn82rV5778727+HS4P3BR8OPhtcEWyX6wZv8x5eGRwWHB+cERwZ3KrNB8dhXMeBd6fGJc5g8e5T/s7HPHSNL/Csd6T0wLM/M6T/I+Hl5zZL8j/Lg2uCfw4+FFwZXNb+g9cPTdyrgpOC1wfHBkcHRyjfJYrL70PFIz/4HhfeMuVbGtd6JxXirZQP1gPPfo2VD/Ds7/XyDV+3DjI//hB8MPiE5g185s3w4JjgVM0D8iEu4/j6pvP0QeXrPOA9IT3O0zyPO7Xg14L8w5+Cz+s+L5dfgxLnuuBM3Q/PhwWKw++DxGN8+B6n6Ty0npmFeNY7SbrsF/WEerE2uD54v/xy3ZkVvCM4SvmsUBx+d/2trW/Oa5TGdzz0zCrEs947pKtDeOwvrG/W7yvBdcGXgk9qX3I9mBucF7wlOO1D1pWHNC5xxhbikffcQrwnpaeU30vSbz3w7NM8+eB9ifXO+n8m+GLwVd1f7jfXu05MD94cnK/77HnRqu7U7rfwnpEe5wXvRel13k3nt32aJf0eF/58jet1QH2h3rwW/LfmF/ON61yPbg/erfnQdN+srX9N14H13V6IZ91zpQuefbpbPngd/F71jjr1enCL3JiPBP+odXCJ6jL1bVFwVfCR4Djly7jk4Xjw+J3xiXOJeLX123rGKU/Hw49FhXj2a5V8gGc/H5FP3j9ZN/8Kbgpu1HqCz3q6K3hv8J4PuS7hMT58jwPPec3X+PA2SZfzNY+494jnukEf81zwheC7WmesO66jz7kpODt4v9aP1yXjMK7jNO2vnPfsQrzaumH990sfPPtzu/Tb57W6z9yfd7Re1stn7w/czxVaL15ftftMq36r6TytXf/WvUi6PC78FRrXPlPvqedvBDcHN6jv4TrvD0uCi4MLgvOUX6s+qul+tE55lsbdIF3O0+Piw5LCuPZpsXywz4u1v1CfPxfcLfiYfB6ifY16/vfgq8HJyo9xGNdx4PE74xJniHi1+5l1TFaejof+vxfi2Z9Xpd/9xsL8z6PBL+S6g4N7B6lb1EOuvzRxJwbfIJ9t38ONqm+um4xLHo4Hb6HGJ86lhXjoeKMQr7auWz+8jeLZr43yAZ795Xfy9Dqg/rMfQPgo+lSPuM77xcrgo1p3TfvV2v2paX2wniXK1+Piw8rCuPbpUflgn9kH6G/eDrYNccvgO/LZ/c/y4APB1YV9p1UfVbs/wXtb+TsfeOiB73zhWe8K6XE8+KsVz/Vms+YD92eb4Lasi+CbqjfeN7iva4KPBR8MLm24D8Hjd8YnzmLxauctcdBVym8r+WA9Hhff1hTGta+PyS+vg9c137ivHwt+KshzE9e5v2IePB58OrhK+dX2abXPc7Xz1jpWKU/HQ//jhXj252npZ/7yXPhI/uHw8LsH2R/Yx+BPSJyPZ7/4hPYN72/EJw6/TyjwyIP45tXuq9YB7xPaB62b3xnf85L+iL7mG8FvB7/D/VF9dj+1feJ3Cu4YnCIdjEc8fnffWNu/OT/i7ShfrI98Hc/60bO94tmfHaXf9Zn5Tl3vEOxIPsEdtC643vX/4eBTwWeCz2p91O4nTddlB+lxXvA6Sq/zhmfdj0sPvO3lm/WbR9xnxfP9oQ+lz/xicBfuLwsn+K72T/evbwZfCa5Vn+S+qvb8orZvru3nrGul8oVnH9ZKHzz79or8sA74b0qH61Qbjb9T8NPar9m/uc56Xgg+p/3a+3urPrepf7V9hfWsUb7wrP856XN+8F9Qft4/t1HcTuxf6nfgO7/ng0+ob6ztm5r6sK3yK437celxnh7XPMb1vKReUWd2D+4R3FX9C9e5vr0WXB9cV+ibWvVDTeup83ta4zse+l4rxLPuddIFzz6tlw+el9Tzzwb3VD7kB586/3Jwg+KX9pXSfgGP8eF7nKZ+7Sldztc8x4P30fCYn1vovnI/9g9+PXhEkPMtzsOI4/6d+9kmfc4ng9sFS+dnrd4HNX1+qD23q53f9gd95tkvxt1O/aF9xqc24vk+bCdf3adQn6jn+wS7BPcK7qw6xvXeJzYFNwf/EXxR9by2Pjbdnzop39K41rupEG9n+WA98PaSb9YPz/5ulm/eD9hv6X8OCh6g/NHz/nsm9VNtc/+32Pb/6221vzft32p9tj7ydTzrJt4WWgf2id/bFtYBdZC62DnYNbhf8EDtM1zv+vl68J3gu8EtM37T/au2bsNznus1PrzO0u384XWVL9YHbz/5Zv3mkSd5vVtYB7tKD9cdEjxU9Zbr3C8wztbBdoU6Wtt31Nb52vthHW2Up+OhHz2OZ3/aSb99Zl2xbr4S7Bb8kuoX13kddgi2D76lfaG2HjZd912UZ2ncL0mX8/S4+NBBdRSefWpvH8Kjn6Te8bz6o+BRqoPw/dy7d+LupLrW9Lm5tu46T8Z3POffVnnCs15+37swL6kXhwWPDPbQOmBdcB315GOJ+6lgR60Dr5tW9Qke+cD3eE3Xq/VsrXzhHSk/rM884nYUzz4foPvH/Tkh2FPrgeu8v3I/dw/uovVQu083XYe18886OihPx0P/7oV49mcX6ff6P0T3pXfweNVr+J4HewR3K+wPrep+0/nmvNppfMdDzx6FeNa7m3R5XnbT/cLnXsGjg1/VvHQd5r7sGtyZfrBhPYfXTeMSp/2HnG9flZ5SfkdLv/V4XPMY133w/rrP3J8zgucEfxbkeZPr3a9wX/cNdgseqOfSpv1P7fNw7by1nk8qT8fDj30L8exXN/kAz34eKJ+8Dlhf1PXjgicGf6j1x3Wu+58N7hnsrPVXu380XffHKX/nA+9E6XO+8Kx3D+lxPPidFY9jKNYD7/c4l+E85VvBC4IXBgcEvxnkvR/x/H0X5zKfDnYP9ggeEdwh6PeFrb4fa/qesvYcyj6Qv3n2YXvpgWffdpB+ePa9u/yD5/vSQ/7C8307Qv573VFH2edPDvYJnqQ6y3XuA7oE9wl+TvtRbd2u7Tvg9VKepXGtr0sh3knSbz3w7NM+8sH7D/0WzwdnBn8Z/LnyI1+u93NE1+AhwYM0vnXV9nutnl+a+mm9XQvxrL+LdMGzb4fID3j29SD55XVAHf1B8PTgT4Nnqc5yHXX288EvBw8I7leo24zDuI5TW9/hna78nQ886+isPOH9VD5Yl3nE3U88+0yf0Vt5cP3Z6kO4zn208z600Ie06seb9j+1+3Ktz9a7r/Q4HvxDFc/1hrrEemId/CrYP9g3eIrqjesZ6+fw4GHBrwS/0LA+wuuj8Ymzj3i19eEU6SrlZz8OL8TrK7+sG559PUx++b0j36fx/dlPgkOCw4K/Cf4iyHfbxPH3bfsHewZPCB4dPJi8lX+r78Lh1X5f53y38viKh37ydzz701N64f2PX9IPz/4eLb/g+X6cIH/dX+8t3eQxNDgieKn2RfZJziOJ5+/40dMreGLwKO2DpXPMVt8Twav9e4La89Pa+VDbL9i/rvLB4+J/r8K4vi9HyV94vo8n6n54v6Nus0/2Cw4MXqS6/v65sPbRrwW/HjyysE+02o9r9xN4/ZS/84FnHYcqT3gD5YN1mUfcI8Wzz9Rz+r7hwauCl6nec537wt7Bk4LHqI7X9pdN9xnn3bsQzzoOV57wrPsY6YJnn06SD+4rztB95v78NjgmeGWQcyCud3/DfT022Cd4fLCb8q3tl2rPqWrnrfV0U56Ohx/HFuLZrz7yAZ79PF4++fy9v+YH9/+K4MUdPsh3n8I8OS74jYZ9Drz+Go84h4lXO58vlo5SftZ7nOK5blBnBgevDY7TfeS+ch116DvBHwVP0X0s1b9SXYNHPvA9XtP5dq10Om941n2sdJlHXOu3z/y9xcTgpODYIP1dd/nM32OcHjwjeLL6v6Z/32EeeZ1e4NX2qdazv/KFZ/0nSx88+3WG/PD65zxxfHB2cEKQc0T4nDOeFjw/+OOgzxdrzyudx2kFnvPqrvHhWc/5yhue9f5YuuwX57Ocl04PzgrOlF8+xz07eF7wXOVTew48s8ArxSPPswvxrOM85QvPOs+VHu//nJPzPon3O9cFb9Z9Zx5wvb/b5L3QqcF+uq+eL62+A216nl/7fqx2PtuPUwvx7Fc/+QDPfp4mn1xn2f/o524KTgmO1P7Ide4P+wbPCn5PfUHtftu0H71CeZbGtb6+hXgjpd964Nmns+SD6wbvf1ivrJ9bg/zd2/vf5SeO1/UFwU7Kp/Y9U+3f4dXWF+ffSXk6HvwLFI95Bf/b4t9GH9LhgzyPNyDov1Ns9XeFTfU4nx01vuPBH6B4Xo+X5x9GB6cF5wRvCF6t9fjdxPt+8GfBXwV/HvyB8mMcxnUceJdrXOJ8V7xpyt/5wLtaekr5zZEP1gXvBvlk3faZfpW+9MbgjOC84Bj57P72l8FzghcG+yi/2ue32n7a+fXR+PBulE7nDW+GfLAu8xj/QvG8/7O/8RzMc+nc4O+Dk7UPcr2/A+F5dmDwkuCZhf2w1XclTffh2ud66xxY4Fn3qdIDzz6dKf3w7Osl8sv7Es8dPFfcGbw9yHk2fD+fDA5eHOypfGrP4Wufg5xXT43veOgZXIhnvRdLl9/DcH7Mue+C4B+C9wVvCXJexnkdcXz+PCg4PDgs2D9YOt+rfb9de/5de65o/YMK8exDb+mCZ9/6ywd49nu4/IPn+zFM/no/4Nyf9ztLgsuCdwQ5z+c6vy8aGhwR/HWwl/Krfe9U+z7CeQ8txLOOXsoTnnX/Wrrg2acR8sH7wXDd59XBR4JLg/TX9O1c7/lzTXBC8Mpgqb9vdX7ddN7WPldYV1/l63Hx5ZrCuPbrSvkAz/5OkG9eB5yrcB7yYHBNcDn7vtaBz2HGBCcFrwr2UH6136nVnvs4vx4a3/HQN6YQz7qvki549mmSfPA6oD+gf6OfWhz8c/CP6iO43uf69GFDgtcHx2n/r31P0LSPqe1HrWeg8nQ8/BhSiGe/rpcP8OznOPnk+zNA84j7vyr4VHBFcLruj7+jZN5cHfxdcGTQ52ytvstser5Xuy6s52zl6Xj4cXUhnn0aKf3w7Ovv5JfrFP0H79XvDz4efEb9Cdf5Pf2o4JTg9EI/Ufu+v7Yvct6jCvGsY5DyhGf9U6QPnv2ZLv32mb6C71lWBp8IPqu+g+v8fczo4NTgDPUJ5Ff7nU1tv+O8RxfiWcdQ5QnP+qdKHzz7M0P67TPPMzyHPBR8UfkPk89+/hkbvFl5Nf1OqenzVq3P1je2EM+6R0sXPPt0s3ywz/S99LUPBF/Sehwhn90nXxu8Reus6fc/Tfvy2rphfdcW4ln3KOmCZ59ukQ/ePzkXp9+lT306+JfgQtaR9k+fp9Pf3hi8IXhp8CfKd4ri8vtZ4rU6x4c3VfmWxq3t8xfKB+txPHy7sRDPvt4gv7wOOMe7N/h8cK36LvowruOc74rgzOAs9V3u01qdG8IjH/ger2l/+Lx0Om941j1EuhwP/izFs8+cQ/E+/rHgy8GHg3fKZ7/fnxy8LTg+OFj51X4nUHs+5rwnF+JZx2DlCc+6x0sXPPt0m3ywz5yfcj76QvD14HPsD/LZ562zg4uCNwX7Kb/ac9va97bOe3YhnnX0U57wrPsm6YJnnxbJB58X833JP4P/0vxgvsDnu5OFwbt0H5t+v2IeeSws8Grnr3VMVr7wrPsu6fO85DmK5591wVeCT1JHNC/93DUvODc4LXie8qv9jqP2Oc/5nafxHQ998wrxrHuadMGzT3Plg+cl5zl8z/PX4MYg5zPw/Z3PnOA9wTHKp9V3Qk3PlZznnEI85z9GecKz3nuky/0Z34dQR6gT/w7+TfmRL9f7uxLqy93BWzW+ddV+n9Xqe5amftbWT/txd4Fnn+ZIPzz7eqv88nxmP+A93qPBzdon4Pt94MTgYtXzpu8Ta/cl5zmxEM86FitfeNY5W3pcZ/m+hDpFfdkU/BO+q876+zXq0b3B64L+/qPVd3DwWn330rTOWscFyhOedV8nXR4X/r0a1z7PZz0E1wffCm6gj5DPFyXeZcE7gvcFFwQvV36Mw7iOA2++xiXOReKtV/7OB94i6Snl95Z8sC54G+STdXv936r790bwzSDfE8H3PFgSXBps+l1S0/nmvAZofMdDz5JCPOtdKl32i/dmvO99h4mbjW+1/PL75RXBlcFrlE/t++na93fOc0UhnvO/Rnma53jwvP/z/oX3If8JdgzxbdVz6jvX+73NsuBTweWq602/U2n6vqh2/7HeZYV41j9RuuDhl+M9VYgH3z75/nBOyvM0z8ttQ/xMcMvgQ7o//o6F5+wHgi8FVwfHKt9W38U0Pc+tPR+wnrHK0/Hw44EW8fDLuuHxu+PBp5z8FwnTNBZ4nJ2dZ/iW5XnGwYGADJUhCA40iamxMZpYqCZm2LTRLE3rylTT7MQmqUnapkkaP4aNICCKqCBLFNCMuhmy995bGWpFAygI2A+cv/9x+DP38Txv/HIe//c+n/O6zut97ue51ystmh37748tj+GsYKtWx/DMYNvgwrS3yHW/bXMMBwSXB3cGVweHBk9o9s44xLUOPNqJi85vC3rkvbygZx9DlSc8fFtvZ0EPvn0nTFO9/pQPNgWb57oPB1sGn1ed74jeuOD84JHgsmB/5Uc89Gi/Qzzyge948Jxff8W3Hv7mF/Twbd6RQlz49u06z8gHy4Ntcl2v4AnBjapz3+jdG1wVPK7tMVyUv8cqP+IQ1zrwaCcuOn0LeuS9qqBnH+gtKvDwbz/waHdc+Pm42UnB2Ym7MnhWCO8NXhTsyvfb8p3XD4z+fcFdwVeDB4Pbg0OUL/HRpX2geOQH33HhOc8him89/O6q0KMO9gOPelnvVfEuUn1dJ/eDaflgW/DtYM9c3yG4Vv2gd/QeDs4NNs99sDF/P6j8iIce7b3FIx/4jgfP+aG3saCHv7kFPXybhy/HhW/frvN69Wv628XB84Ivqc5j9DyhP74VfCX4e/kgDnGtA4924qIzRry6zxF08FPK72I9Z+0L3nmqk337eTM98TcHTwnhI8Eeem/P0vOmT3THB9cFjwZf0jjG4wfio0t7H/HID77jNjpusd91Bb1WqoP9wKNe1jsqXg/V13VyP9iaD/YGO+a6j6rfbVM/mBi9J4Kbgi3S70r9eav0aJ8oHvnAd7xGnyP4Qtd5w0MH//YDj3Z07d91npcPdgQ75bqPBU8NrlGdB0f3keDm4EmJsz5/P6D8iIce7YPFIx/4jgfP+aG3vqCHv80Vevi3H3i0W++kQp3n5IMNwXa57hPB9sE9qvOg6D4UXBNsnThr8/fjyo84xLUOPNqJi86ggh55ryno2Qd6a8XDt/Va6/3ZXnWyb9d5puYpjPcvC57D80d17he9d81DEm9P/p4jH8QhrnXg0U5cdPqJV3dehA5+SvnhG137gneO6mTfrvPcfPAC78Vc9/fB9wdXq853Ru/R4NLg8Yn3ev6+Xz6Ihx7td4pHPvAdD57zQ+/1gh7+lhb08G3e8arz+1Un+2Z8cWKQ+QPj/yvUb+iX8D3PaBn9Un+dr+cS7Z4f1Z3P1H1OtJMf5wmPduLbl+vFegzrKZ/R9/KC6uV1m9OiW/qeF+q+p93rUnXXh+reXyfJj/OERzvx7cv9eHE+OC78TwbP1/tth/rx8OguCJ4c/dc0HvD7lXjo0T5cPPKB73iNvtfxha7zhtdJ/u0H3vmql/27zks0n2VeeEbw08HDqvPd0fN8dUewfeLOUn7EIa514NFOXHTuFq/u/Bkd/JTywze69gXv06qTfbv/Mw5kHPc5zU82q/97vNg5uqV5Efro0O5xbt1xad352Cny4zzh0U58+3K9eP/xXvoH1imYP6hefk+2i25pXRZ9dGj3+73u+7juenBz+XGe8Ggnvn25Hy/gg/DfF7wqyHrncvXju6I7L7g32CFxSuuyxEOP9rvEIx/4jtfoejC+0HXe8NrIv/3Au0r1sn/XeVE+2B9snes+G2R9c6XqPCy6zwZXBDslTml9lXjo0T5MPPKB73iNruva34qCHr7N66T311mqk33ztfIcWJX4rwfPDuFTwUuCp+ND62CjovtUcHewTeIezt9bg1Pli/jo0j5KPPKD77jwnOdUxbcefndX6FEH+4FHvazXRt/PJaqv6+Tn8zLVh3w+z/yh1Tv596jO5Hl64ixU3ugSx9fDo5146NzzV9b/ePko5fd53X/24/t5aeIe4L0Vwt8Frwx2D76p+3lE9J8LLg42S7y2wRfz+XTlS1zysB482omPzoiCHj4WF/TsB70XxaMO1mum+7S76mXf8K5UfV0nP9dX5IMjwX/KdZcHWwTf0HN9ZOLODp4a/RODS/L5NOVHPPRoHyke+cB3PHjOD70l4uELXedtPfzbDzza0bV/13ldPtgd7Jzrvqjv/4DqPDpxHwtuCXZNnNL9RxziWgfeOvVPdEYX9Mh7S0Gvbv84Uf7tBx7tjtu18LzZkvj7gl1C+FDwC8wPg3/W82ZC9J8JbgseCnZJ3JX5+2nlS3x0aZ8gHvnBd1x4zhO9lQU9/G6r0KMO9gOPelnvkHhfUH1dJ/cD7iPWo1lP/sfg1fq+uY77zOvXpyROx+AW5bdH/c46jd7fddfT8QPf+cLrLN8lH1erTvbtccpO3Yd879cEL9U4ZYruZ+6HM6L/tvJBlzi+Hh5xzLNe3fv8GvVf5+m48O3D9+WL8sP112qcv1/P58lt/rKvbolXmj8Qh7jWgUc7cdGZ/FfWue78prX82w+8a3U/2b/rvF3vf963X9LzZp/qPEnjCd7H3ROn9LwjHnq0TxKPfOA7XqPP2brjEnzDty94XVQn+6ZO8F9L3H/WPIh5Frwnc/2Z0SvNu9DjetqfLPCIi655ded7tFtvd8E3423Gy/8SPCjfHo+fFd0Zio8e19PueUbd8b7zmaH45qHrPO37d+HNhM/zoJV0c32/4OTgFMVHB11f1/QcK/BKeuQ1uaDnvKcoTz9P+oe3lPdZ62O4m/4ZHKPxxE3RG8G4M/hY8OHgvym//tKj/SbxyAe+48EbozxLce1vcUHPvh+Wr6bxt+r0mOrgOg8IbznvaZ4nwdnB8arzl6N3b/Dp4FPBgcF/V34DpEf7l8UjH/iOB2+88izFtZ+BytdxqcPThbiu01Oqg8dtA8NbGHwt+FZwnMZtX4nOUJ6zweeDP1U+A6VD+1fEIz58x4HnvH6q+NbDz5MFPft9Xr5crz7hTQ0eDjbP/b1J9bo+Ov/NPhj7EMFxygdd4vh6eLQTD53rC3rkOaug5/zHKc+m/T35nS9frldvxhmMTxhvBRepXtdF5+7gtOAzwWHKp7d0aL9OPOLDd5ym8VZB75mCHn6mFfTs9xn5ysdNdRuWDx7Ufc79eZT3fnBOq3def2t0f6T+yH09Jzg9OEj5Epc8rAdvmOKjc6t44+THeTXar+17kPzAc52my7/jwp+juH4v9QtvTXBvsFX6w6z8/Xu9l26M3gPBJ4LLgwOCv1F+/aRH+43ikQ98x4OHDnmW4trPAOXruNThiUJc12m56uB+MCQfbA8eCLbL9bvy9wvBR9QPvhHdScHngmuCU4OPBv9D+Q6RLu3fEI/84DsuvEeUbymu/T5X0LP/R+ULnus1VXVoWkdVfdeobu4HdxE3uCHYJtefEFyhfnBz9P4z+FBwVXBRcKTyIw5xrQOPduKic7N4G5S/84FnHyOVp/Xwv6qg5/oskn/XuW901wdb57r2jMvz+VzV+YbojQmuCK4NDg/eqfz6So/2G8QjH/iOBw8d8izFtZ/hytdxqcOKQlzXaa3q4OfNyHzwUHBHcD91jQ7vc97/XP/d6P44+Ejw2eASvfc9TiAueVgP3kjFR+e74u2QH+fV6DjG9Xi2oOd6LVEdmtarVM9pqpPHkXeGt4y65/rjgtM1jvxadO4JLg0uCPZRPuijQ/vXxCM+fMeB57z6KL718LO0oGe/C+TLz41B0WVeyXywba7nfcz7m+u+Gj3PQ1frfe33O3GIax14gxQXna+KV3deXHf8Yd9PyJfjwl+tuK7zA+HPD74dPBJcEByrOv8wekOCc4Ozg3cFf6L8HpAe7T8Uj3zgOx68scqzFNf+5hb07Psu+YLnOs1WHVznweGxzsQ6UofW79Sbrzp/PXpel9qoePYxWHq0f1088oHveI3Wr+56mv1vLPBcn7ny7+fsPeGtDR4MnhKdaXrOfjs6DwZnBNcFeysf9NGh/dviER++48BzXr0V33r4mVHQs9918uV6DQ1/dfD0XMe60kLV65bo3B/cGiytTw2VDu23iEd8+I7T6LqY/Wwt6Nnvk/Llfnwv9Q++GjwUZB7CPIjrvhO9vsH/Dc4MluZJxCGudeDdq7jofEe8V5W/82l0HndIdbAv86w3s1Dn4XoO85ztmO+L+3yt6vxNvX94Lm9SP3C/IQ5xrQNvuOKi803x6r5H6vZr+54hX44Lf5PiprnpOfBwPpgcZN2Q9b4zo3My80LGe7n+59H9r6DXG3cGVwZHKV/ikof14NFOfHR+Lt4i+XFeja6T2vco+bEe9dpZ0HM9V6pO7gcjorsyeHyu6xJkv2S5+sG3ondfcGFwW7C0/zJCerR/Szzyge94je772N/Cgp59Py1f8FynbaqD+8HEfMB6FOtNF+T6cxin5PM/qB/8LLpex9oX3BMcG/wf5TtRurT/TDzyg++48NAh31Jc+xqrfBtdr3Pd9hV4ruse1cv9YFJ0mY8yj+wWZF9nqvrBL6Ln+esLwdJ+0iTp0f4L8cgHvuM1uo9Vd95t37Pky3rwX5Ce6zwqeuxPsP/QPddz3mCm6vz96Hk/48Vg6fzCKOnR/n3xyAe+48Gre26i7j6MfU+WL+s18aXncfd94Z8a/mlBzhk0nV8I/3vRWR/cECyda0AfHdq/V+CRx/oCr+55CvtYrHzh2fcG+fPzeQrjxiDzJeY5ZwV57vM+4fpfRvd3Qc+zdun94PcOccnDevBoJz46vxRvmvw4r0bnh3Xfn67TQvl3XPi7FNfPjfs1PmN8c3aQ9b9lem78QONCxkO7g6X1ROKhR/sPxCMf+I7X6Dpm3fGgfS+VL+vB3y0913l04rKfwz5Mj2Cz4GbV+bboef/npeC84HjlRxziWgce7cRF5zbx6u5H2cd45QnPvufJl+PCf0lxXec/8V4Nsu/bNXgG6wqq8x3R837z9uCO4ETlRxziWgce7cRF5w7x6u5/28dE5Wk9/G8v6Lk+O+TfdX5c9w3fY0vGhfl8nur8a92vfO/Lgo8HByu/x6VH+6/FIx/4jgcPHfIsxa17P6ODf/uxnnnzCnWeoPkA4+4Lg+x77VCdb4+e5wUHgqV9NOIQ1zrwJiguOreLV3eeUnefz76flS/HhX9AcV3nx9Q/6Qd/G2Rfd73q/Cs9F+g3bwRL+8TEQ4/2X4lHPvAdD17d/em6zw37XiFf1oP/hvQ8Hnw+H3Dej/N8Hwx+IMj6LuvBXN8/uj4n+GZwf7C0bkx8dGnvLx75wXfcRter655zdD3eLPBcp63yD8913a96eX7DOQjOL1wU5PwI503g+7zEwWDpHAr66NA+XLy65zLqnn+xj1XK13HhH1Tcd/3eNfG3BF8Odsr1nYOv6LkxOnoTgn8Ibg5uCf5R+RGHuNaBRztx0Rkt3svK3/nAww985wuPePgu+XB9tkjP9yXzeObp5wbPY91W96Xn+y8HXwn6dxtVv8dodF3BeU1RfOvh5+WCnv2+Il/v+v2p5v3M1y8PfiTIPm3TezB6nv+f2O4YHs3fG5Vf1e8sGt0/rrseYV/kaZ79EveoeK7PUfn3fcm6KecXPxT8WJD1Uvg+B3mI+z36+5RP3XOUdddvneehgp7z36c84dkv7YcK9yXnXNgHYJ3/E8Ergm11X/r3JOwLtE68lkGfq6n6XQq8qvM3je5j2Ad6LVU/+8eP9VwfdOB7nMV+Lfu3f5PrLg5+WPcB9wXXe5/3z8G3gkd0//r+qdo3hld1/hce+aPrvBq9v6kDuvYHz3U6JP/Wg39Eeu4He3W/8b1+VvP1VuoHPj/GfdApWJrfV52Dh1f3vFrddYW6/cC+0esknuvUSf3fdeZ8CONkxsGf5Pmedn6PwXU+T8K4+eTE8e81yK/qd13wqs6vwKv6nQg8+5mjfBudN7hO6Owv3M/so3OulnO2VwavCp6p+9m/S+IcbtvE6xDcqfyqft8Er+7+ftW5YPPwRZ7m2S9xO+j7cH1ob1sYb7DuwbrGl5QP+cH3+kh36Tvvuueo667D1K2X/ZCn9ewXve6F9+Cb6j/cz9cHr9b4m/F407/XkPjuT+cEOwZL4/a6vwer2odstJ/XnVfYP7yO0nPd8O+4rmtH1cvfD+uhrO9fEvxo8NLgexj36PvxvsHhYIvEezt//19wmfxXrcc2ul/RUvmW4trv4YLee1QH+4HnuuH/sHiXFnjo+vvhXBrneJk/MT+6KXgt37e+H5+v9rzrvMTvFvS5uKrz2vCqzs/BqzqX3Oh80b6J2039wvXCt/VcT3Tg+717UL657otB9oHZF27698Xa/uV8uwa9b0x+VeeU4dU991i1X91one0bva7iuU5ddR+6zpzX4TzODcEbg6yzNledfb6nR/TPDZbWd6t+7w6v7nmiuuvK9ke+1rNv9M5VnV0n2nsU6sy5J/bf2V+/VXl1U539uyT24y9UPPuo+n0TvKrzWPDqnh+oW2f7x4/1XB/0LizUmXMk9BP6wc1B1hu6qM4+d0K/uUDrEY2e64RX95xL3XWTus8D+24tX9aDf4Gem35/cn6BfQf2FT4V/JzGAYwLuN6/02U/ok3iddZ73uOHqt/9wqs6Z9HoPkrd8Y3rgS/ruU7oddb347rS3qbw/bAP8b5gz+DHg72C56On74f9ir3B5sQJHhd8Le1b5KtqHwQe+cF3XHidlW8pbk/5dv7wzlcd7Afex1U/1wFeL9XXdfJzinNWzKOZJ/+rnos8J7nO5/OZV39Qz0U/R6vO+cOrOv/V6DpA3ee8/ePHeq7PhfLvOrPPzz7+j9Qv6aftVWefC+ip/ub9U/Kr+p08vLrnEKr2ba2HP/K1Xt3nkusED13//+uYZzM/vibIvl7Tvqzm4WcEvX9YtS/Y6Dzf+aB3hnjOn/aOBd+cG74lyD7bafLNOeIPRKe0n1d1DrkUF13z6u4jOn946Pr9wno269W3B2/Tfch9yXkarvc6+BXBXrrPfO6GfKvO9TW6/l513qfRfua64M9xXa+eqgM817eX6paPm55/nBNjn5N9zOuCPw7+JMj6I+uV6Ph3MOyDnh28LHi51iu9vln1+xp4Vefb4NXdx627/ur64M96rld3+YfnOl+musHz94DO/wPPoMh4eJydnHnQVmUZxtE0BQRT9k0EVDTNwMwMBRdMFrcUEbBSSC0nN8AlHStTQdMUSUVNR1RKy70al1JxwUxcp8IFp3JB0JJqcsFMBZuJ6/fN8LNn3ufAP9fM917nvu/rOud57vuc97wM69zuf/82XA3tPhnctsNq3D44MXhy8JDgHh3WPG5Fp9X4XnBg4u8W3DzYMbheuzXzkNdx4G2rvMRZId5E1e964O0hPaX6rHtz6XJe+Hw+sODz0PCGBUcH9w/uF/ycfP4AvYm7abBnsEdwpXwZqnh8/oF41APf+eC5PuL1EG+0dLpuePvLB+syj/w9xLPPO4S3b/Dg4LjgXsFd5fOH0dM9cTcL9gt2Dn5S9e3geJ3XjAePeuA7H7xdVWcp717S5TqdFx/Q5bz2qZ98sM9DdD1wfg4Pjg8Ol8/vR7evn22C/YMbqD7ykNdx4A1RXuK8L17t9Txcekr1WT96HM/+9Jd++7xjeLsEpwQvD14ZnCSfV0XP+om7bXBK8MjgINVHHvI6DrwdlZc4q+TzFNXveuBZxyDV6Xjon1KIZ3+OlP724W0QHBHe7sHJwZuDdwVPCu7D9ZXjN0zcDsFPB08Ofj84IthN9ZKXOhwP3gjlJ86G4k2WHtcFbx/pKtVnP04uxLNPI6Qfnn39vvzyOmB90Q8OCx4RPErrj+PcL7YOfib4Wa2/2r7TdN0fpvpdD7wjpM/1wrPebaTH8eB/VvHsM/s//eCbwROC3wgeKp/dL4YGvxgcEtyiYd+BN055idOvEI+6hxbiHSo9pfqse4h0wbNPX5QP3m/2DO+44PHB76l+9NDHOX6jxP1CcOfgaOUt9fs9FZfPNxKP+uA779rOGa3Oj30YKn3wjpeP9sM84o4Wz+tgbHjcBzDn/zz40+CXtQ66Jp7vG6YHjw/2Vn1jFY/Pu4pHPfCdD57r6638Te93rH96gWd/jpf+/LnN75H5w0HBacHLgvcEf0MfD46hTyZOp8TvG9wlODk4I3h2cPtgF9U/UvH5vJN41Avf+eGNUd2lvNPkg3XAsw/bS5fj4ePkQjz7PEO+wfN5OFu+ev0w39Kf6D8n0u+DU7V+PA/Tr4YHxwaHqb5WczW88cpLnP7i1fZX6xpe4FnvMOmBZ3/GSr99pr8fGzw9+B3VdZR8pv/vFPxScG/lazpPwKMe+M7X1L/TpdN1w7Pu4dJlHnGt3/36gPAODHKfwv3Fr4PMtczLHN8rcfsEfX9zVrA0V5OXOhwP3gHKT5xe4k2SHtfV9L6s9v7Afp1ViGc/T5ZPXgfMZ8xf3w2eETwleLTWgee5UcExwd2DO6i+bygenw8Rr3Z+PFp1lvJa36hCvFOk33rg2acx8sH9ekL+8HX1IfrC3ZoTmBt4XkqcAYm/nfoxfeVMzQ1+vkr9ExSfzweIR73wnb/2uS68I+WDdTTt17Xzlf2dLr+cF/6Zyuv1w5zNfPzD4Pm63rj+2p5rJx7z9PjgwbqOmt4vNb0PqF0X1jNK9TovPowv5LVPB8sH+zw9vFOZt4LnBWcGT5PPuybensH9g+OCBwRHqj7ykNdx4E1XXuLsKt4M1e964J0mPaX6zpMP1gVvpnyybvtM/6fPnxm8IPgDzVkc53lhn+AhwYMKc1vt3NFqvoN3pup3PfCsY6zqdDz0H1KIZ38Okn77zDri+r8oOIv+rv7CcV53k4ITg/uqD9f2q6br/AzVWcp7lnS5TufFh0mFvPZponywz1N1njk/PwlyHzdNPvs+g/N5XLB0XzhV8fjc91219zW196O117P1H1fg2Z/J0m+fWSfnBucErwj+WOuI41hHBwYPD349eITWEfWRh7yO03T9zlH9rgeedRyiOuFdIR+syzziHiGe76d4Hsf3BHwP8HDwZ+q/9GOO57mdv1+4MDhNfdh9m7zU4Xi1zw2bfu9RO1dY/3jpgme/pskH1wf/QtXndcC+xD51XXBe8KrgbK0D72PHBI8NHhU8tOF+CG+W8hJnYiEedR9TiDdbekr1XSX91gPPPh0rH+zzheFdHLw6eENwbvAS+Twh8b4a/GZwavDo4NdUH3nI6zjwLlRe4kwQ72rV73rgXSI9pfpukA/WBW+ufLJu7zf0ZdYT6+XW4C26Xrh+ON5zPevs28FTdJ59nbW6T2g6P9TuD7XrwPqPkS7nxbdvF/La11Pkl9cB/Zx+RB+5KXi9+j3HeT6l75wUPEH9vnbObTpn1PZT6zqpwLPe46QHnv05Qfq9DujT1wbvCN4ZvE31US/H08+/Ffxe8IzgqcpfmidKcwI86oPvvE39vEO6XT886z9JuuDZr1Plg3nkt19eB6w/1s29wfuCt6u/cJzX68zgOcHT1Idr+1XT/WGe6izltb6ZhXi3S7/1wLNP58gH+3y9zjPn8bfBx4OPyGevL877rOClwYsarlN4jxR4jld7nVrXrALPui+VLnj25SLpts83hvfL4APBhcEHg7+Szycm3unB84IXB88Pfkf1kYe8jgPvRuUlzoniPaD6XQ+8X0lPqb6F8sG64D0on6yb/Xj9IOeZ/WZB8FGdf/jery4I/qhw3mv3u9rrbYHqdR3wHpUe12me88JzH+R5AP2V9cZ1vTj4uyDff3O8nyN4nc4Lzg7OUL2tnkvAq/1+vnZeqN1frHuG9Dgefs0rxLOfs+WTr2f6A3PkE8Gn1Dfge76cE7xcfaB2Pm3ap1znnEI81z9TdcKz3suly/ssczn3908GX1Zd1Mlxfl5wWfAm5bOO2vuA2ucTtf5Z32WFeNY9R7rg2aeb5IP3jXt1Xp4NPhN8Ojhf8wjH+3xfE5wbvCJ4rua32jmn6XV2n+ot5Z0vfa7TefHlmkLep+Wb9cOzv3Plm9cB+z/9YFHwueDzmnPannepX1wdvDZ4neac2r7TdL5apPpdDzzruFR1wntOPliXecS9Tjz7/Fh4vw/+KfhS8M/BP8jnSxLvyuD1wRuDNwSvUn3kIa/jwHtMeYlziXh/Uv2uB94fpKdU30vywbrg/Vk+Wbd9fkTnmfPzanCp+i/HeS7nfN4avE39t3a+b9r3a69T67q1wLPeedIDz/7cJv2eN9hf2G9eCS4JvqB5w/vQzcFbgj9puI/Be0b5iDO3EI86by7Ee0E6SvVZ7y3S5T5IX6Vv/j34D9VFnfQFjnc/vit4t/KW+ker+ajpHFDbt2p9ty93FfLar5vlAzz7e7d88/XM75+6dVyN3YO8V8d7ePD5XdRLwZeDpffzWv2+yjzqeKnAq30v0DrOUr3wrPtl6fM+S/97MbgsuFz7EvsUx9Effx68PXin9ptSXy71W3jUA9/5mu6fy6TTdcOz7luly/Hg36l4vi75XQDvr/F+Wp+cp74d1+T79wO8x7Ys+JrqafX7A3jkMc/xat+3s45lBZ51viY93mfZF1j3bwffCf4z+Jr2b473fjI/eH/w18FfqH/V9oWm+9gS1VvK+5r0uU7nxZf5hbz/lG/WD8/+3i/fvG+8qut/RfC94L81h3Cc19MDwQXBh9Zyrmm6fl3fbcrveOh7oBDP+hdIHzz785D022f2mTeCbwXfVV3L5TP70B3B+4IPqi7rIA95Had2/4P3lup3PU19flc+WJd5jgcvf27zm/ft6a/0z22CPYM8N+F5DO+XEMfv69N/3w4uCfr5TdPfCcNr9XsBeK3eg2k6Z9Q+j7Jvl8kH58Xvtwt5fT6WyF/3EZ67ct/Eemf9tU+cfsEeHdc83s9rvU8sCr4efEX1tnr+C4+85jle7X1g7f5mHxYVePbpdemHZx9fkT8+P8wPvLd/j/wizqeDfXR+/H6/n9eT/x3NG9Tb6vcCTeecVr8XbPo9Q+11YZ/eKfDs4zL54/PDumW99Q92DK7K59yncf/X9n2T1vvfgs8GFwZL94mtnlM33Wdq70+t6y7VC88+LJQ+ePbtWflhHfD/Jh2+r6A+8rdj/9T8DN86Htec1/T+u6lftXOrdcxXvc4L/3Hl9Tz1tvjrBtcJ/kdzMMc5/5PBJ4IPB+9Xfa3m6qZ6iUOdpbx8ji7X6bz48GQhr316Qj7YZ+Yu5rCVwY+Cn0ic9+Sz57RHg48FnwouUH2t5r2mc/pK1e964FnHAtUJ7yP5YF3mEfcp8bw//1t6OK5DsGuwd5A+zvG+/yDfM8EXg0sL/b7V/UzTOaPWT+t8psCz7kXSA89+vSgf4NnPpfLJ+zPnc8PwN1Ld6IDPef5j8DnVUbquStcLPPLDd56mvqKDuK7XPMd7ruAX+wv7Tedgp+B68sv70OLg88GnG+5j8NZRPuI8UYhHnYsL8daTjlJ91vu8dHn90/+YKzYP9lJd1Ml+z/GeV94Ivqq8pb7Qqv82nZOa9qNWvtuXNwp57ddi+QDP/r4q39wHue5ZB12CmwUHaN/hOK+TvwT/Glyufad2vTXd77qoftcDbzPpc73wrPdF6XE8+MsVz+ugk84f52dwcOvgwODGWgdeZ5zXN4NvBf8efKHhuoXXSfmJ87x4tdfjxtJVqs9+vFmIN1B+WTc8+/qW/PI66KrzuW1wx+AO6qsc5+tjRXBV8MNCP2/Vp5tej65vqfI7HvpWFOJZ/yrpg2d/PpR++8y62So4JDhUdQ2Qz6yrfwXfD36gupquU3jUA9/5mvo3RDpdNzzrXiFd5hHX+u1ze10PnJ9Dg18J9pPPnj85n1tsvBq3DL6u+mrn2NrndLXXs3UQjzodD/3ocTz7Qxz4ngfZt+i7nwvupP0MvvvxymC7xH9T9bTq5033T9e5shDP9b+pOuFZL5+vLFyXzDs8Pzog+GXVRZ0c5+dRvZKnt/JZR+1zrdo5zHVTh+PV+mzd8HrLZ/vE5+S3z4N1Xr4Q3Dm4nfojx/k8rxNcN/iu5o3aftv0utpadZbybiddrtN58QFdzmuf1pUPH/t/+tW/hgdHBHdTH217/qT9ewPiB9sHV0lHbb+o7d/DVb/rgWcdxGsv3gj5YF3mEbe9ePb58+ENC44Mjg3uFdxFPn+E3sTtFOwa7BxcX/WRh7yOA+/zykucj+TzSNXveuDtIj2l+sbKB+uCt5d8su6P/T/9Os+cn1HBSeqjbf9Pv+Y+zucmwUHqo7XzY9P+XXudWtcmG/9/nnUPki549mUL6bbP7DO7B/cJjg7uoX2I49iHOgS7BTcNdtR+XbuvmUddHQq8nVVnKa/1dVP98PaQfuuBZ582lQ/2mb5K3zxQ+tC7k3x2H+6jukv9o9U81LTvN+1brc6b9XeQPtcHn897F3xmP987OCa4r9bZbvKZ/f5TwS7B7lpnpT5T6h/wqAe+8zXdD8ZIp+uGZ92bSJfjwe+ueL7f4P3Z/YL7B3nvhPdU4PNebY/E6xksvb/S6v1c86iD+ObVvjdjHfB6yi/r5vMeBb96Ki7HMU/3l19+X4f4pTm/1ffh8Fq9F9T0/qLWL+vtpeuAdej9mnV/kPbvtuez2jf6ah9uuv/X7kuup5vyOx78vopn3aMVl+PGSbf7DXH7NexTzkse4my6lrpddz/xrJv9Z0JwovajtufsOX5AcOBa7mfwyAff8eG5nu7K73jwByqedY9SXI6bJN3et4k7SPlr9/vaebJWt+seJJ73Q97D4nkZz7m+GuT9K/h+P47nYVsF39G+1Or9Oni174PVPt9z/cTbSjzr5fMtC371UVyO+xr7ivzy+2rEHxz07xha/e4AXqv34uC5LuINXku/rHewzv9/AR/E+bU=AQAAAACAAABgNgAAMAwAAA==eJwt22m8SHX+wPFEJFxlzV66KSVFlyJSSZRE3UTZyZItS4wsdyy52WUp2bJl7HshGqT+rm1cZJCUZSwxuGO9I4b/g+/7PHk/+Zzf6/d9eM75nTJ3xFWLnTiOy7mfN1k6S/gi23M0F3MHL/LeO8PKbMp+nMU0nmLurGFFNmYKv+aPPMO82cJKbMK+nMyNPMlcd4WPsQF783Ou5zHekT0ow1rsxHFcwK08zdsslyNsyT6cxNXcxSssenf4AltwFBdxDzNZKGdYiU04iPO4heeY757wWTbiAM7hNv7BhFxhEt/jQM7gTv6b9+UOn2Ez9udsbuVp5skTPs232Idf8Sf+izkTwif5Bj/iKH7HI7zFxLxhTbbmMM7jPl7mA/eGNdiZI7mCu5nBhPvCJ/g6O3Ecl3M/L7BAvrAqW/KvnMsdPMvC+cPKbMp+nMU0nmf+AmFFNmYKv+Z2nmHegmElNmFPzuQWnmSuQmEFNmJvTuNmHmOOwuETfJ09+CXX8DdmvT8syzrsytFczL28yMJFwupsysGcxU08xbuKhhX5JlM4ndt5hnmLheVZj505kgu5jRlMKB4mMZk9OI7Lmc4LzFMiLMe67MjhnM80nuJdJcNE1mRrDuI8buFl5isV1mBzfsKF3MYMFnzA3Ezmx5zBDTzBex4My7I+e3Eq1/Eos5cOH2Zdduck/sTDvPOh8FHWZhdO4Eoe5C2WSAxr8gMO41Lu42UWeTisweb8hAu5mxksWCZ8jsnswXFcznReYJ5HwnKsy44czvlM4yne9WiYyJpszUGcyS08yXxlwwpsywGcwwP8H4s/Zm624qdcwkPM8bieHTiGm5nB4uXCBuzNadzMDD70hJ6fcCEPMFt587I5x3Mjz/GBJ8N67MmZ3Me7nworsQmHcSnPsESF8DWmcBEP8hYfrxg2ZgoX8QhzPx2+wX5cxsPMmRRWZx+u42kWqBTWYVdO5VZeYIHKevbiVK7jaRZ4Rs+uXMD9vOfZ8Bl24gzu5HWWqRIm81N+w2NMqBomsRU/5XoeY8Jz4XNsxU+5nhksXi18lb25kAeYrXr4LNtyPDfyHIs8H9ZgW47nRp5krhrWZ1tO5kZe5gMvhPU4iEu5j1leDMuzHjtzJNfyJHO9FFZgI47kWp5jkZrhK+zLmfwH/+QjL9sPe3Im/8EsHizLszXH8nseZ6FXwprsxunczkwm1g4bM4WLuIe3mFgnfJNDuZJHmPvVsCLbcQp38QYffS1syMFczbMsXDd8mW04mKt5kSVfD+uyD+dyL7PXC59mS07kD7zJsm+E73AE1/ASS9UPX+fH/Bt/5h0NgiS24hhuZgYfetNtHMCF3M1sb4WPsRFHci1PMl9y+Cw7czw38iSLvB2+wp5cyuMs1DB8jd04ndt5i4nv6JnCRTzC3I3CKmzHUfyOp5i/cfgCu3AK03iFRd/VswVTOJ3f8zjvfi8sz3rsyclcy9+ZrUn4GF/lh/yc3/BnXuf9TcPn+T6HcAHTeYEFmoVV2ZKpXMwdvMjCzcPqbMPBnMU0nmf+FmFFNmYKp/NHnuHdLcPyrMeenMwV3M0M5mgVJrEDB3IGN3A/b7J067AO23MiV/EX3mbJNmF1tuFwLuMuXmHR98MX2IJDuYh7+B8WahtWY2sO4zzu42UWaRfWYFt+woXczQwWbB8+x/c4kH/jTv6b93UIn+E77M+J/IGnmf2DsBzrsiM/4zIe5g0+2jGszY84gd/xIDNZyAveSnybPTmZa/k7r7F45/AlduCnXMKfeYmluoTP830O4QKm8yqLdQ2rsiVTuZh7eZGFPwyrsw37cT538TzzdwursAVT+DW38wzzdg8r8W325Uxu5Enm6hFWYAP25uf8hod4naV6hrX4PkdwAbfyAvN8FFblu0zlXO7lRRbuFVZmQ37ECVzJPcxkod5hNTZhX07mWh7gNRb8S5jEZPbgOC5nOi8wT5+wHOuyI4dzGXfxBot+HNZmO47iSu5hJkv0NTebcBDncQvPMV+/sAIbcQDncDP/YEL/8Akm82PO4E6e4D0DwqdYn704let4lNlTwodZl935GVfzMG/wwb+GtdmOo7iSB5nJEgPDmmzCvpzMtTzAayw4KExiMntwHJcznReYZ3BYjnXZkcM5n7t4nkWHhFXYhUO5iEd41ydhImvyA47ltzzOvEP17MYvuJ2ZTEwNGzOFX3M7M/n4p3qO4koeYe5h5mU7TmEar/DR4WFD9uN8Hua9I8LqbMPPuJoX+fDI8C2mchWPMvuo8Gm2ZCpX8TQLjA7f4RCu4QneNyasxYHczAwWHxs2YG/O4W5eY/HP9BzAOdzMDBb3obcBe3MFf2e+8WEN9uQ87mOWCWF5NuFYfs8zLDQxrMYPOJY/8gwLfR7W5Accyx+ZycQvwjeZwpU8wtyTwhfYhVOYxit88MuwNrtwCtN4nvknW59dOItpvMFHp4QNOZyreZg5p4aV2ZAfcQI38TzzTwursAUncBOv8MHp4RsczPn8J+/8KnySDdmP8/lP5pxh/+zISfyJZ1lyZliXfTiXe3mb5WaFLZnKVfyF2Wfr+S5Hcx1Ps8CcsCq7cjb3M+vX4VNsxhHcwEssNTd8nZ04ght4nWX+FiZzIJfwEBPmhc+xA6dxG7PNDyuwOcdzI//kIwvCtzmIS/kr714YVuMH/ILbmcnHF4WNOZQreZC5F4cV2YITuInnWXRJ+AI/4hSm8TwfXBq+wX5czbMsuSx8i304l3uZ3YGacnyLqVzF0yywInyRXTmRP/ACi60M67AXZzOdN1l6lZ7tmcq5/Ilnee83YWU2ZD/O4iaeYu5vw4p8k3/hdH7PX5lldfgAX2FnjuQKHuA1Fl8TvsQOHMNv+DOvs9TasBY7cQQXMJ1XWey7sCpbMpVzuYMXee+6sDIbsh9n8TseZCbzrg+rsRuHcR638Hdm+z58jA34IadxPY8xx9/DMqzFThzHNdzPmyy9IazD9hzNVfyF/2XJjeHL7MjPuIyHeYMPbgprswtHcSUPMpMlfghrsjWHcSn38TKLbA5rsDk/4TRuYwYTfgyTmMwe/JJreIJZfwqfYn3251T+wKO8zZL/F1ZnU/bjLG7iKd5i4pbwNXbjWH7LX/knH0kLX2FnjuQKHuD/+NDW8CV24Bh+w0O8zlLbwlrsxCFczv28ymLbwxfZnqlczL28yMI7wupsysGczzSeZ/6dYRU2Zgqn83seZ5Z/hI+wHjtzPFdwN6+x4K7wJbbiGC7hIV5nqfTweTZjf07lOv7C2yy5O3yZbTiYs7iJR3iLJfaE1diEfTmZa3mA11hwb5jEZPbgOK7hfmb9OSzN+uzKiVzHX3ibD+8zN9twOJdxF6+w6D/DKmzBoVzE7fwPCznQW4lNOIjzuI/nmO9A+CwbcQDncDP/YMLB8Akm82N+yQ08way/hGVZn105ket4lLf58KGwLttwMGdxE4/wFkv8GlZjE/blZK7lAV5jwcNhEpPZg+O4nPt5laV/C19kL47mKp5mnt/DcqzL7pzEv/MsCx/Rsw+/4l7eZrmjYUumcjH38jafPqbnRK7jaRY4bl525Wym8yaf+lfYjEO4nCd4/4mwFjvxS27gdT5xMnyPY7iefzDhVPgcO3AM1zODxU+HzTmSG3mORf4I63EYtzOTiWfCxkzhIh7kLSae1XMoF3E7M5n4bz1T+B1Psei5sDb7cRkPM+f5sDLbcBJ/4kWWvBC+zO6cxB28yJIZYV125yTu4G2W+0/4LlO5jqdZ4GJYh704m+m8ybKXwvrsxdlM51UWu2x99uICpjPrlfApNuM4buAJ3nc1fJ7N2J9TuZVXWexa+CLbcyq38ibLZobvcASX8zfe89/wGTbjEC7nb7zvuv2zB2dwJy+xzJ9hMgdyCQ8xx40wiR04hut5jAl+fEliK37Ozcxg8f+FL7E3F/J35roVPsu2HM8t/JOP3A7fZk+O5xZmuSN+uCnPJhzGb3mchbKENdmNX3MPc98ZVmE7TmEa78waPsmmHM7V/BfvzRa+zO78int5m0/fFbbkaK7jURbIHlZle07lVl5l6RxhHfbnbKbzKsveHb7DIdzASyyTM3yPA7mEh5hwT5jE9ziG65nB4rnCV9mb07iN1/hQ7rABB3AhDzBbnvAxNuCHHMMl3MlLvD8h/H98O5vm
+
+
diff --git a/geos-mesh/tests/data/fracture_res5_id_empty.vtu b/geos-mesh/tests/data/fracture_res5_id_empty.vtu
new file mode 100644
index 00000000..a69adb95
--- /dev/null
+++ b/geos-mesh/tests/data/fracture_res5_id_empty.vtu
@@ -0,0 +1,41 @@
+
+
+
+
+
+
+ AQAAAACAAACgBgAAbgEAAA==eJwtxdciEAAAAEBRUmlpK9q0aEpbey/tTUMb0d57T6VBO+2NSGjvoflDHrp7uYCA/6o40EGu6moOdnWHuIZrupZDXdt1XNf1XN9hbuCGbuTGbuKmbuZwN3cLRzjSLd3Krd3Gbd3O7R3laHdwR3dyZ3dxjGPd1d3c3T3c070c596Odx/3dT/39wAP9CAneLCHeKiHebhHeKRHebTHeKzHebwneKInebITPcVTPc3TPcMzPcuzPcdzPc/zvcBJTvZCL/JiL3GKl3qZl3uFV3qVVzvVaU73Gmc402u9zuu9wRu9yZu9xVu9zdu9wzu9y7u9x3u9z/t9wAd9yId9xEd9zMd9wid9ylk+7TPO9lmf83lfcI5zfdGXfNlXfNXXfN03nOebvuXbvuO7vuf7fuCHfuTHfuKnzneBC/3MRS72c5f4hUtd5nK/9Cu/9hu/9Tu/9wd/9Cd/9hd/9Td/9w9X+Kd/+bf/+K//uRLqf1df
+
+
+
+
+ AQAAAACAAADgBAAAEgEAAA==eJwtxddCCAAAAMAiozSkoaGh0NAeqGhrSNEg7SFkJKFhlIhoaCBUP9tDdy8XEHAo0Ed81EE+5uM+4ZMOdohPOdRhDneETzvSZxzlaMc41mcd53gnONHnnORkpzjV553mdF/wRV9yhjOd5Wxfdo5zned8F7jQRS52iUt9xVd9zWUud4Wv+4YrXeVq17jWda73TTe40U1u9i23+LZb3eY7vut2d7jTXb7n++72A/e4133u94AHPeRhj3jUDz3mR37sJx73Uz/zc7/whF960q885dd+47ee9oxnPed3fu8P/uh5L/iTF/3ZX7zkr/7mZX/3D6941Wte909veNNb3vYv//Yf7/iv//m/d73nfR8ARZMvOw==
+
+
+
+
+ AQAAAACAAADwCQAAXQIAAA==eJxtlaFOK1EQhheFQZCKq1E3+xQN6Zm+QR8ATdKER1iPQVVvVhxxa6rQtNy6DcFhGzwJkhzF9ITO/93kVn3Z7M78Z86XTtP4r7/YN6dfey7enInvvv4Gdx/ih3dx/ybejOKnrfj1UXxYiz97cbMSX96LrzrxzS3yLJBhir4tek1QvzwHXr+IuwG8FDe/wKtd89/faob3E+qAB/H1i7gp4sPEkF/cT8XdQnxzK77qxJf34mYl/uzFh7X49RF9t+LNiAxv4od35PkQ333h27N5cHsu7i/I+/Wf3+nnHbG7F+zuBbt7we5esLunb0exuxfs7gW7e8HuXrC7F+zuBbt7we6e8iyQYYq+LXpNUL88B7t7qjOAl2J3D9l24qbB8xneT6gDHhL6JuRJyGnIbziX4byGORjmY5ibIZthzob5i9093JfY3cP9it09+CB29+DPHF6J3T2wO5bhXoZ7Ge5luJfhXoZ7p29HcXUvw70M9zLcy3Avw70M9zLcO+VZIMMUfVv0mqD+0b0M9051BvBSXN2LbDvx0b14PsP7CXXAQ0LfhDwJOQ35DecynNcwB8N8DHMzZDPM2TB/cXUv7ktc3Yv7FVf3wgdxdS/8mcMrcXUveB//+3XnlnAvuO7cEu4F151bwj19O4rrzi3hXnDduSXc0+5ZievOLeFecN25pzwLZJiib4teE9Q/7twS7qnOAF6K686NbLt/dqSez/B+Qh3wkNA3IU9CTkN+w7kM5zXMwTAfw9wM2QxzFtedG/eCvltx3blxv+K6c8MHcd254c8cXonrzi3pG10/Tpw=
+
+
+ 0
+
+
+ 2304.8861143
+
+
+
+
+
+
+ AQAAAACAAACAEwAAWQMAAA==eJxd1Vf7CAQYhnEjpKiUWYmiREX29rf33nvvvffee29KoShbpE2plJXxhRy474Oe9+R3Xff1nL/1Cz2/BjgFJ2M9rB99EtaNnX0ifho7+wSsEzv7eKwdO/s4/CR29rH4cezsY/Cj2NlHY63Y2UdhzdjZR+KHsbOPwBqxsw/HD2JnH4bvx84+FKvHzj4Eq8XOPhjfi519EL4bO/tArBo7+wCsEjt7f3wndvZ+WDl29r74duzsffCt2Nl745uxs/fCSrGz98SKsbP3wAqxs3fH8rGzd8NysbN3xbKxs3fBN2Jn74yvx87eCcvEzt4RX4udvQO+Gjt7e3wldvZ2WDp29rZYKnb2Nvhy7Oyt8aXY2QuwZOzsrfDF2NlbYonY2Vtg8djZm2Ox2Nmb4QuxszfForGzN8EisbM3xsKxszcq9P8rHL0h+k/8O5/jZzgpdvbjODF29mM4IXb2ozg+dvYjOC529sM4Nnb2QzgmdvaDODp29gM4Knb2/TgydvZ9OCJ29r04PHb2PTgsdvbdODR29l04JHb2nTg4dvYdOCh29u04MHb2bTggdvat2D929i3YL3b2zdg3dvZN2Cd29o3YO3b2Ddgrdvb12DN29nXYI3b2tdg9dvY12C129tXYNXb2VdgldvaV2Dl29hXYKXb25dgxdvZl2CF29qXYPnb2JdgudvbF2DZ29kXYJnb2hdg6dvYFWBA7+3xsFTv7PGwZO/tcbBE7+xxsHjv7bGwWO/ssbBo7+0xsEjv7DGwcO/t0bBQ7+zRsGDv7VPSf+Hee4hM8Hjv7YzwWO/sjPBo7+394JHb2h3g4dvYHeCh29vt4MHb2e3ggdva7uD929n9xX+zs/+De2Nnv4J7Y2f/G3bGz/4W7Ymf/E3fGzn4bd8TO/gduj539d9wWO/st3Bo7+03cEjv7b7g5dvZfcVPs7L/gxtjZf8YNsbP/hOtjZ/8R18XO/gOujZ39Bq6Jnf17XB07+3VcFTv7NVwZO/t3uCJ29qu4PHb2K7gsdvbLuDR29ku4JHb2i7g4dvYLuCh29vO4MHb2c7ggdvZvcX7s7N/gvNjZz+Lc2NnP4JzY2b/G2bGzf4WzYmc/jTNjZz+FM2JnP4nTY2f/EqfFzv4FTo2d/QQ+A6EeATg=
+
+
+ AQAAAACAAADgBAAADgEAAA==eJwtxRFwAgAAAMC2C4IgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCIIgCAaDwSAIgiAIgiAIBkEQDPqXDwbeQg474qhjjjvhpFNOO+Osc8674KJLLrviqmuuu+GmW26746577nvgoUcee+KpZ5574aVXXnvjrb/87R//eue9Dz765LMvvvrmu//88NMvBz7eBR1y2BFHHXPcCSedctoZZ51z3gUXXXLZFVddc90NN91y2x133XPfAw898tgTTz3z3AsvvfLaG2/95W//+Nc7733w0SefffHVN9/954effjnw+S7okMOOOOqY40446ZTTzjjrnPMuuOiSy6646prrbrjpltvu+B9fwUXT
+
+
+ AQAAAACAAACcAAAADAAAAA==eJxjZx+8AABPhQRF
+
+
+
+
+
diff --git a/geos-mesh/tests/test_arrayHelpers.py b/geos-mesh/tests/test_arrayHelpers.py
index 0a73ee99..35951f74 100644
--- a/geos-mesh/tests/test_arrayHelpers.py
+++ b/geos-mesh/tests/test_arrayHelpers.py
@@ -81,6 +81,22 @@ def test_isAttributeInObjectDataSet( dataSetTest: vtkDataSet, attributeName: str
assert obtained == expected
+@pytest.mark.parametrize( "attributeName, onpoints, expected", [
+ ( "PORO", False, False ),
+ ( "GLOBAL_IDS_POINTS", True, True ),
+] )
+def test_isAttributeGlobal(
+ dataSetTest: vtkMultiBlockDataSet,
+ attributeName: str,
+ onpoints: bool,
+ expected: bool,
+) -> None:
+ """Test if the attribute is global or partial."""
+ multiBlockDataset: vtkMultiBlockDataSet = dataSetTest( "multiblock" )
+ obtained: bool = arrayHelpers.isAttributeGlobal( multiBlockDataset, attributeName, onpoints )
+ assert obtained == expected
+
+
@pytest.mark.parametrize( "arrayExpected, onpoints", [
( "PORO", False ),
( "PERM", False ),
@@ -100,6 +116,35 @@ def test_getArrayInObject( request: pytest.FixtureRequest, arrayExpected: npt.ND
assert ( obtained == expected ).all()
+@pytest.mark.parametrize( "attributeName, vtkDataType, onPoints", [
+ ( "CellAttribute", 11, False ),
+ ( "PointAttribute", 11, True ),
+ ( "collocated_nodes", 12, True ),
+] )
+def test_getVtkArrayTypeInMultiBlock( dataSetTest: vtkMultiBlockDataSet, attributeName: str, vtkDataType: int,
+ onPoints: bool ) -> None:
+ """Test getting the type of the vtk array of an attribute from multiBlockDataSet."""
+ multiBlockDataSet: vtkMultiBlockDataSet = dataSetTest( "multiblock" )
+
+ vtkDataTypeTest: int = arrayHelpers.getVtkArrayTypeInMultiBlock( multiBlockDataSet, attributeName, onPoints )
+
+ assert ( vtkDataTypeTest == vtkDataType )
+
+
+@pytest.mark.parametrize( "attributeName, onPoints", [
+ ( "CellAttribute", False ),
+ ( "PointAttribute", True ),
+] )
+def test_getVtkArrayTypeInObject( dataSetTest: vtkDataSet, attributeName: str, onPoints: bool ) -> None:
+ """Test getting the type of the vtk array of an attribute from dataset."""
+ vtkDataSetTest: vtkDataSet = dataSetTest( "dataset" )
+
+ obtained: int = arrayHelpers.getVtkArrayTypeInObject( vtkDataSetTest, attributeName, onPoints )
+ expected: int = 11
+
+ assert ( obtained == expected )
+
+
@pytest.mark.parametrize( "arrayExpected, onpoints", [
( "PORO", False ),
( "PointAttribute", True ),
diff --git a/geos-mesh/tests/test_arrayModifiers.py b/geos-mesh/tests/test_arrayModifiers.py
index 5f90bb13..cf9b6311 100644
--- a/geos-mesh/tests/test_arrayModifiers.py
+++ b/geos-mesh/tests/test_arrayModifiers.py
@@ -1,82 +1,146 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright 2023-2024 TotalEnergies.
-# SPDX-FileContributor: Paloma Martinez
+# SPDX-FileContributor: Paloma Martinez, Romain Baville
# SPDX-License-Identifier: Apache 2.0
# ruff: noqa: E402 # disable Module level import not at top of file
# mypy: disable-error-code="operator"
import pytest
-from typing import Union, Tuple, cast
+from typing import Union, Any, cast
import numpy as np
import numpy.typing as npt
import vtkmodules.util.numpy_support as vnp
-from vtkmodules.vtkCommonCore import vtkDataArray, vtkDoubleArray
-from vtkmodules.vtkCommonDataModel import ( vtkDataSet, vtkMultiBlockDataSet, vtkDataObjectTreeIterator, vtkPointData,
- vtkCellData )
+from vtkmodules.vtkCommonCore import vtkDataArray
+from vtkmodules.vtkCommonDataModel import ( vtkDataSet, vtkMultiBlockDataSet, vtkPointData, vtkCellData )
from vtk import ( # type: ignore[import-untyped]
- VTK_CHAR, VTK_DOUBLE, VTK_FLOAT, VTK_INT, VTK_UNSIGNED_INT,
+ VTK_UNSIGNED_CHAR, VTK_UNSIGNED_SHORT, VTK_UNSIGNED_INT, VTK_UNSIGNED_LONG_LONG, VTK_CHAR, VTK_SIGNED_CHAR,
+ VTK_SHORT, VTK_INT, VTK_LONG_LONG, VTK_ID_TYPE, VTK_FLOAT, VTK_DOUBLE,
)
+# Information :
+# https://github.com/Kitware/VTK/blob/master/Wrapping/Python/vtkmodules/util/numpy_support.py
+# https://github.com/Kitware/VTK/blob/master/Wrapping/Python/vtkmodules/util/vtkConstants.py
+# vtk array type int numpy type
+# VTK_CHAR = 2 = np.int8
+# VTK_SIGNED_CHAR = 15 = np.int8
+# VTK_SHORT = 4 = np.int16
+# VTK_INT = 6 = np.int32
+# VTK_BIT = 1 = np.uint8
+# VTK_UNSIGNED_CHAR = 3 = np.uint8
+# VTK_UNSIGNED_SHORT = 5 = np.uint16
+# VTK_UNSIGNED_INT = 7 = np.uint32
+# VTK_UNSIGNED_LONG_LONG = 17 = np.uint64
+# VTK_LONG = 8 = LONG_TYPE_CODE ( int32 | int64 )
+# VTK_UNSIGNED_LONG = 9 = ULONG_TYPE_CODE ( uint32 | uint64 )
+# VTK_FLOAT = 10 = np.float32
+# VTK_DOUBLE = 11 = np.float64
+# VTK_ID_TYPE = 12 = ID_TYPE_CODE ( int32 | int64 )
+
+# vtk array type int IdType numpy type
+# VTK_LONG_LONG = 16 = 2 = np.int64
+
from geos.mesh.utils import arrayModifiers
-@pytest.mark.parametrize( "attributeName, onpoints", [ ( "CellAttribute", False ), ( "PointAttribute", True ) ] )
+@pytest.mark.parametrize(
+ "idBlock, attributeName, nbComponentsTest, componentNamesTest, onPoints, value, valueTest, vtkDataTypeTest",
+ [
+ # Test fill an attribute on point and on cell.
+ ( 1, "CellAttribute", 3, ( "AX1", "AX2", "AX3" ), False, np.nan, np.nan, VTK_DOUBLE ),
+ ( 1, "PointAttribute", 3, ( "AX1", "AX2", "AX3" ), True, np.nan, np.nan, VTK_DOUBLE ),
+ # Test fill attributes with different number of component.
+ ( 1, "PORO", 1, (), False, np.nan, np.float32( np.nan ), VTK_FLOAT ),
+ ( 1, "PERM", 3, ( "AX1", "AX2", "AX3" ), False, np.nan, np.float32( np.nan ), VTK_FLOAT ),
+ # Test fill an attribute with default value.
+ ( 1, "FAULT", 1, (), False, np.nan, np.int32( -1 ), VTK_INT ),
+ ( 0, "collocated_nodes", 2, ( None, None ), True, np.nan, np.int64( -1 ), VTK_ID_TYPE ),
+ # Test fill an attribute with specified value.
+ ( 1, "PORO", 1, (), False, np.float32( 4 ), np.float32( 4 ), VTK_FLOAT ),
+ ( 1, "CellAttribute", 3, ( "AX1", "AX2", "AX3" ), False, 4., np.float64( 4 ), VTK_DOUBLE ),
+ ( 1, "CellAttribute", 3, ( "AX1", "AX2", "AX3" ), False, np.float64( 4 ), np.float64( 4 ), VTK_DOUBLE ),
+ ( 1, "FAULT", 1, (), False, np.int32( 4 ), np.int32( 4 ), VTK_INT ),
+ ( 0, "collocated_nodes", 2, ( None, None ), True, 4, np.int64( 4 ), VTK_ID_TYPE ),
+ ( 0, "collocated_nodes", 2, ( None, None ), True, np.int64( 4 ), np.int64( 4 ), VTK_ID_TYPE ),
+ ] )
def test_fillPartialAttributes(
dataSetTest: vtkMultiBlockDataSet,
+ idBlock: int,
attributeName: str,
- onpoints: bool,
+ nbComponentsTest: int,
+ componentNamesTest: tuple[ str, ...],
+ onPoints: bool,
+ value: Any,
+ valueTest: Any,
+ vtkDataTypeTest: int,
) -> None:
- """Test filling a partial attribute from a multiblock with nan values."""
- vtkMultiBlockDataSetTest: vtkMultiBlockDataSet = dataSetTest( "multiblock" )
- arrayModifiers.fillPartialAttributes( vtkMultiBlockDataSetTest, attributeName, nbComponents=3, onPoints=onpoints )
-
- iter: vtkDataObjectTreeIterator = vtkDataObjectTreeIterator()
- iter.SetDataSet( vtkMultiBlockDataSetTest )
- iter.VisitOnlyLeavesOn()
- iter.GoToFirstItem()
- while iter.GetCurrentDataObject() is not None:
- dataset: vtkDataSet = vtkDataSet.SafeDownCast( iter.GetCurrentDataObject() )
- data: Union[ vtkPointData, vtkCellData ]
- if onpoints:
- data = dataset.GetPointData()
- else:
- data = dataset.GetCellData()
- assert data.HasArray( attributeName ) == 1
+ """Test filling a partial attribute from a multiblock with values."""
+ multiBlockDataSetTest: vtkMultiBlockDataSet = dataSetTest( "multiblock" )
- iter.GoToNextItem()
+ # Fill the attribute in the multiBlockDataSet.
+ assert arrayModifiers.fillPartialAttributes( multiBlockDataSetTest, attributeName, onPoints, value )
+ # Get the dataSet where the attribute has been filled.
+ dataSet: vtkDataSet = cast( vtkDataSet, multiBlockDataSetTest.GetBlock( idBlock ) )
-@pytest.mark.parametrize( "onpoints, expectedArrays", [
- ( True, ( "PointAttribute", "collocated_nodes" ) ),
- ( False, ( "CELL_MARKERS", "CellAttribute", "FAULT", "PERM", "PORO" ) ),
-] )
-def test_fillAllPartialAttributes(
- dataSetTest: vtkMultiBlockDataSet,
- onpoints: bool,
- expectedArrays: tuple[ str, ...],
-) -> None:
- """Test filling all partial attributes from a multiblock with nan values."""
- vtkMultiBlockDataSetTest: vtkMultiBlockDataSet = dataSetTest( "multiblock" )
- arrayModifiers.fillAllPartialAttributes( vtkMultiBlockDataSetTest, onpoints )
-
- iter: vtkDataObjectTreeIterator = vtkDataObjectTreeIterator()
- iter.SetDataSet( vtkMultiBlockDataSetTest )
- iter.VisitOnlyLeavesOn()
- iter.GoToFirstItem()
- while iter.GetCurrentDataObject() is not None:
- dataset: vtkDataSet = vtkDataSet.SafeDownCast( iter.GetCurrentDataObject() )
- data: Union[ vtkPointData, vtkCellData ]
- if onpoints:
- data = dataset.GetPointData()
- else:
- data = dataset.GetCellData()
+ # Get the filled attribute.
+ data: Union[ vtkPointData, vtkCellData ]
+ nbElements: int
+ if onPoints:
+ nbElements = dataSet.GetNumberOfPoints()
+ data = dataSet.GetPointData()
+ else:
+ nbElements = dataSet.GetNumberOfCells()
+ data = dataSet.GetCellData()
+ attributeFilled: vtkDataArray = data.GetArray( attributeName )
+
+ # Test the number of components and their names if multiple.
+ nbComponentsFilled: int = attributeFilled.GetNumberOfComponents()
+ assert nbComponentsFilled == nbComponentsTest
+ if nbComponentsTest > 1:
+ componentNamesFilled: tuple[ str, ...] = tuple(
+ attributeFilled.GetComponentName( i ) for i in range( nbComponentsFilled ) )
+ assert componentNamesFilled == componentNamesTest
+
+ # Test values and their types.
+ ## Create the constant array test from the value.
+ npArrayTest: npt.NDArray[ Any ]
+ if nbComponentsTest > 1:
+ npArrayTest = np.array( [ [ valueTest for _ in range( nbComponentsTest ) ] for _ in range( nbElements ) ] )
+ else:
+ npArrayTest = np.array( [ valueTest for _ in range( nbElements ) ] )
- for attribute in expectedArrays:
- assert data.HasArray( attribute ) == 1
+ npArrayFilled: npt.NDArray[ Any ] = vnp.vtk_to_numpy( attributeFilled )
+ assert npArrayFilled.dtype == npArrayTest.dtype
+ if np.isnan( value ) and vtkDataTypeTest in ( VTK_FLOAT, VTK_DOUBLE ):
+ assert np.isnan( npArrayFilled ).all()
+ else:
+ assert ( npArrayFilled == npArrayTest ).all()
- iter.GoToNextItem()
+ vtkDataTypeFilled: int = attributeFilled.GetDataType()
+ assert vtkDataTypeTest == vtkDataTypeFilled
+
+
+@pytest.mark.parametrize( "multiBlockDataSetName", [ "multiblock" ] )
+def test_FillAllPartialAttributes(
+ dataSetTest: vtkMultiBlockDataSet,
+ multiBlockDataSetName: str,
+) -> None:
+ """Test to fill all the partial attributes of a vtkMultiBlockDataSet with a value."""
+ multiBlockDataSetTest: vtkMultiBlockDataSet = dataSetTest( multiBlockDataSetName )
+ assert arrayModifiers.fillAllPartialAttributes( multiBlockDataSetTest )
+
+ nbBlock: int = multiBlockDataSetTest.GetNumberOfBlocks()
+ for idBlock in range( nbBlock ):
+ dataSet: vtkDataSet = cast( vtkDataSet, multiBlockDataSetTest.GetBlock( idBlock ) )
+ attributeExist: int
+ for attributeNameOnPoint in [ "PointAttribute", "collocated_nodes" ]:
+ attributeExist = dataSet.GetPointData().HasArray( attributeNameOnPoint )
+ assert attributeExist == 1
+ for attributeNameOnCell in [ "CELL_MARKERS", "CellAttribute", "FAULT", "PERM", "PORO" ]:
+ attributeExist = dataSet.GetCellData().HasArray( attributeNameOnCell )
+ assert attributeExist == 1
@pytest.mark.parametrize( "attributeName, dataType, expectedDatatypeArray", [
@@ -101,149 +165,325 @@ def test_createEmptyAttribute(
assert newAttr.IsA( str( expectedDatatypeArray ) )
-@pytest.mark.parametrize( "onpoints, elementSize", [
- ( False, ( 1740, 156 ) ),
- ( True, ( 4092, 212 ) ),
-] )
+@pytest.mark.parametrize(
+ "attributeName, onPoints",
+ [
+ # Test to create a new attribute on points and on cells.
+ ( "newAttribute", False ),
+ ( "newAttribute", True ),
+ # Test to create a new attribute when an attribute with the same name already exist on the opposite piece.
+ ( "PORO", True ), # Partial attribute on cells already exist.
+ ( "GLOBAL_IDS_CELLS", True ), # Global attribute on cells already exist.
+ ] )
def test_createConstantAttributeMultiBlock(
dataSetTest: vtkMultiBlockDataSet,
- onpoints: bool,
- elementSize: Tuple[ int, ...],
+ attributeName: str,
+ onPoints: bool,
) -> None:
"""Test creation of constant attribute in multiblock dataset."""
- vtkMultiBlockDataSetTest: vtkMultiBlockDataSet = dataSetTest( "multiblock" )
- attributeName: str = "testAttributemultiblock"
- values: tuple[ float, float, float ] = ( 12.4, 10, 40.0 )
- componentNames: tuple[ str, str, str ] = ( "X", "Y", "Z" )
- arrayModifiers.createConstantAttributeMultiBlock( vtkMultiBlockDataSetTest, values, attributeName, componentNames,
- onpoints )
-
- iter: vtkDataObjectTreeIterator = vtkDataObjectTreeIterator()
- iter.SetDataSet( vtkMultiBlockDataSetTest )
- iter.VisitOnlyLeavesOn()
- iter.GoToFirstItem()
- while iter.GetCurrentDataObject() is not None:
- dataset: vtkDataSet = vtkDataSet.SafeDownCast( iter.GetCurrentDataObject() )
+ multiBlockDataSetTest: vtkMultiBlockDataSet = dataSetTest( "multiblock" )
+ values: list[ float ] = [ np.nan ]
+ assert arrayModifiers.createConstantAttributeMultiBlock( multiBlockDataSetTest,
+ values,
+ attributeName,
+ onPoints=onPoints )
+
+ nbBlock = multiBlockDataSetTest.GetNumberOfBlocks()
+ for idBlock in range( nbBlock ):
+ dataSet: vtkDataSet = cast( vtkDataSet, multiBlockDataSetTest.GetBlock( idBlock ) )
data: Union[ vtkPointData, vtkCellData ]
- if onpoints:
- data = dataset.GetPointData()
- else:
- data = dataset.GetCellData()
- createdAttribute: vtkDoubleArray = data.GetArray( attributeName )
- cnames: Tuple[ str, ...] = tuple( createdAttribute.GetComponentName( i ) for i in range( 3 ) )
-
- assert ( vnp.vtk_to_numpy( createdAttribute ) == np.full( ( elementSize[ iter.GetCurrentFlatIndex() - 1 ], 3 ),
- fill_value=values ) ).all()
- assert cnames == componentNames
-
- iter.GoToNextItem()
-
-
-@pytest.mark.parametrize( "values, onpoints, elementSize", [
- ( ( 42, 58, -103 ), True, 4092 ),
- ( ( -42, -58, 103 ), False, 1740 ),
-] )
+ data = dataSet.GetPointData() if onPoints else dataSet.GetCellData()
+
+ attributeWellCreated: int = data.HasArray( attributeName )
+ assert attributeWellCreated == 1
+
+
+@pytest.mark.parametrize(
+ "listValues, componentNames, componentNamesTest, onPoints, vtkDataType, vtkDataTypeTest, attributeName",
+ [
+ # Test attribute names.
+ ## Test with an attributeName already existing on opposite piece.
+ ( [ np.float64( 42 ) ], (), (), True, VTK_DOUBLE, VTK_DOUBLE, "CellAttribute" ),
+ ( [ np.float64( 42 ) ], (), (), False, VTK_DOUBLE, VTK_DOUBLE, "PointAttribute" ),
+ ## Test with a new attributeName on cells and on points.
+ ( [ np.float32( 42 ) ], (), (), True, VTK_FLOAT, VTK_FLOAT, "newAttribute" ),
+ ( [ np.float32( 42 ) ], (), (), False, VTK_FLOAT, VTK_FLOAT, "newAttribute" ),
+ # Test the number of components and their names.
+ ( [ np.float32( 42 ) ], ( "X" ), (), True, VTK_FLOAT, VTK_FLOAT, "newAttribute" ),
+ ( [ np.float32( 42 ), np.float32( 42 ) ], ( "X", "Y" ),
+ ( "X", "Y" ), True, VTK_FLOAT, VTK_FLOAT, "newAttribute" ),
+ ( [ np.float32( 42 ), np.float32( 42 ) ], ( "X", "Y", "Z" ),
+ ( "X", "Y" ), True, VTK_FLOAT, VTK_FLOAT, "newAttribute" ),
+ ( [ np.float32( 42 ), np.float32( 42 ) ], (),
+ ( "Component0", "Component1" ), True, VTK_FLOAT, VTK_FLOAT, "newAttribute" ),
+ # Test the type of the values.
+ ## With numpy scalar type.
+ ( [ np.int8( 42 ) ], (), (), True, None, VTK_SIGNED_CHAR, "newAttribute" ),
+ ( [ np.int8( 42 ) ], (), (), True, VTK_SIGNED_CHAR, VTK_SIGNED_CHAR, "newAttribute" ),
+ ( [ np.int16( 42 ) ], (), (), True, None, VTK_SHORT, "newAttribute" ),
+ ( [ np.int16( 42 ) ], (), (), True, VTK_SHORT, VTK_SHORT, "newAttribute" ),
+ ( [ np.int32( 42 ) ], (), (), True, None, VTK_INT, "newAttribute" ),
+ ( [ np.int32( 42 ) ], (), (), True, VTK_INT, VTK_INT, "newAttribute" ),
+ ( [ np.int64( 42 ) ], (), (), True, None, VTK_LONG_LONG, "newAttribute" ),
+ ( [ np.int64( 42 ) ], (), (), True, VTK_LONG_LONG, VTK_LONG_LONG, "newAttribute" ),
+ ( [ np.uint8( 42 ) ], (), (), True, None, VTK_UNSIGNED_CHAR, "newAttribute" ),
+ ( [ np.uint8( 42 ) ], (), (), True, VTK_UNSIGNED_CHAR, VTK_UNSIGNED_CHAR, "newAttribute" ),
+ ( [ np.uint16( 42 ) ], (), (), True, None, VTK_UNSIGNED_SHORT, "newAttribute" ),
+ ( [ np.uint16( 42 ) ], (), (), True, VTK_UNSIGNED_SHORT, VTK_UNSIGNED_SHORT, "newAttribute" ),
+ ( [ np.uint32( 42 ) ], (), (), True, None, VTK_UNSIGNED_INT, "newAttribute" ),
+ ( [ np.uint32( 42 ) ], (), (), True, VTK_UNSIGNED_INT, VTK_UNSIGNED_INT, "newAttribute" ),
+ ( [ np.uint64( 42 ) ], (), (), True, None, VTK_UNSIGNED_LONG_LONG, "newAttribute" ),
+ ( [ np.uint64( 42 ) ], (), (), True, VTK_UNSIGNED_LONG_LONG, VTK_UNSIGNED_LONG_LONG, "newAttribute" ),
+ ( [ np.float32( 42 ) ], (), (), True, None, VTK_FLOAT, "newAttribute" ),
+ ( [ np.float64( 42 ) ], (), (), True, None, VTK_DOUBLE, "newAttribute" ),
+ ( [ np.float64( 42 ) ], (), (), True, VTK_DOUBLE, VTK_DOUBLE, "newAttribute" ),
+ ## With python scalar type.
+ ( [ 42 ], (), (), True, None, VTK_LONG_LONG, "newAttribute" ),
+ ( [ 42 ], (), (), True, VTK_LONG_LONG, VTK_LONG_LONG, "newAttribute" ),
+ ( [ 42. ], (), (), True, None, VTK_DOUBLE, "newAttribute" ),
+ ( [ 42. ], (), (), True, VTK_DOUBLE, VTK_DOUBLE, "newAttribute" ),
+ ] )
def test_createConstantAttributeDataSet(
dataSetTest: vtkDataSet,
- values: list[ float ],
- elementSize: int,
- onpoints: bool,
+ listValues: list[ Any ],
+ componentNames: tuple[ str, ...],
+ componentNamesTest: tuple[ str, ...],
+ onPoints: bool,
+ vtkDataType: Union[ int, Any ],
+ vtkDataTypeTest: int,
+ attributeName: str,
) -> None:
"""Test constant attribute creation in dataset."""
- vtkDataSetTest: vtkDataSet = dataSetTest( "dataset" )
- componentNames: Tuple[ str, str, str ] = ( "XX", "YY", "ZZ" )
- attributeName: str = "newAttributedataset"
- arrayModifiers.createConstantAttributeDataSet( vtkDataSetTest, values, attributeName, componentNames, onpoints )
+ dataSet: vtkDataSet = dataSetTest( "dataset" )
- data: Union[ vtkPointData, vtkCellData ]
- if onpoints:
- data = vtkDataSetTest.GetPointData()
+ # Create the new constant attribute in the dataSet.
+ assert arrayModifiers.createConstantAttributeDataSet( dataSet, listValues, attributeName, componentNames, onPoints,
+ vtkDataType )
+ # Get the created attribute.
+ data: Union[ vtkPointData, vtkCellData ]
+ nbElements: int
+ if onPoints:
+ data = dataSet.GetPointData()
+ nbElements = dataSet.GetNumberOfPoints()
else:
- data = vtkDataSetTest.GetCellData()
-
- createdAttribute: vtkDoubleArray = data.GetArray( attributeName )
- cnames: Tuple[ str, ...] = tuple( createdAttribute.GetComponentName( i ) for i in range( 3 ) )
-
- assert ( vnp.vtk_to_numpy( createdAttribute ) == np.full( ( elementSize, 3 ), fill_value=values ) ).all()
- assert cnames == componentNames
-
-
-@pytest.mark.parametrize( "onpoints, arrayTest, arrayExpected", [
- ( True, 4092, "random_4092" ),
- ( False, 1740, "random_1740" ),
-],
- indirect=[ "arrayTest", "arrayExpected" ] )
+ data = dataSet.GetCellData()
+ nbElements = dataSet.GetNumberOfCells()
+ attributeCreated: vtkDataArray = data.GetArray( attributeName )
+
+ # Test the number of components and their names if multiple.
+ nbComponentsTest: int = len( listValues )
+ nbComponentsCreated: int = attributeCreated.GetNumberOfComponents()
+ assert nbComponentsCreated == nbComponentsTest
+ if nbComponentsTest > 1:
+ componentNamesCreated: tuple[ str, ...] = tuple(
+ attributeCreated.GetComponentName( i ) for i in range( nbComponentsCreated ) )
+ assert componentNamesCreated, componentNamesTest
+
+ # Test values and their types.
+ ## Create the constant array test from values in the list values.
+ npArrayTest: npt.NDArray[ Any ]
+ if len( listValues ) > 1:
+ npArrayTest = np.array( [ listValues for _ in range( nbElements ) ] )
+ else:
+ npArrayTest = np.array( [ listValues[ 0 ] for _ in range( nbElements ) ] )
+
+ npArrayCreated: npt.NDArray[ Any ] = vnp.vtk_to_numpy( attributeCreated )
+ assert npArrayCreated.dtype == npArrayTest.dtype
+ assert ( npArrayCreated == npArrayTest ).all()
+
+ vtkDataTypeCreated: int = attributeCreated.GetDataType()
+ assert vtkDataTypeCreated == vtkDataTypeTest
+
+
+@pytest.mark.parametrize(
+ "componentNames, componentNamesTest, onPoints, vtkDataType, vtkDataTypeTest, valueType, attributeName",
+ [
+ # Test attribute names.
+ ## Test with an attributeName already existing on opposite piece.
+ ( (), (), True, VTK_DOUBLE, VTK_DOUBLE, "float64", "CellAttribute" ),
+ ( (), (), False, VTK_DOUBLE, VTK_DOUBLE, "float64", "PointAttribute" ),
+ ## Test with a new attributeName on cells and on points.
+ ( (), (), True, VTK_FLOAT, VTK_FLOAT, "float32", "newAttribute" ),
+ ( (), (), False, VTK_FLOAT, VTK_FLOAT, "float32", "newAttribute" ),
+ # Test the number of components and their names.
+ ( ( "X" ), (), True, VTK_FLOAT, VTK_FLOAT, "float32", "newAttribute" ),
+ ( ( "X", "Y" ), ( "X", "Y" ), True, VTK_FLOAT, VTK_FLOAT, "float32", "newAttribute" ),
+ ( ( "X", "Y", "Z" ), ( "X", "Y" ), True, VTK_FLOAT, VTK_FLOAT, "float32", "newAttribute" ),
+ ( (), ( "Component0", "Component1" ), True, VTK_FLOAT, VTK_FLOAT, "float32", "newAttribute" ),
+ # Test the type of the values.
+ ## With numpy scalar type.
+ ( (), (), True, None, VTK_SIGNED_CHAR, "int8", "newAttribute" ),
+ ( (), (), True, VTK_SIGNED_CHAR, VTK_SIGNED_CHAR, "int8", "newAttribute" ),
+ ( (), (), True, None, VTK_SHORT, "int16", "newAttribute" ),
+ ( (), (), True, VTK_SHORT, VTK_SHORT, "int16", "newAttribute" ),
+ ( (), (), True, None, VTK_INT, "int32", "newAttribute" ),
+ ( (), (), True, VTK_INT, VTK_INT, "int32", "newAttribute" ),
+ ( (), (), True, None, VTK_LONG_LONG, "int64", "newAttribute" ),
+ ( (), (), True, VTK_LONG_LONG, VTK_LONG_LONG, "int64", "newAttribute" ),
+ ( (), (), True, None, VTK_UNSIGNED_CHAR, "uint8", "newAttribute" ),
+ ( (), (), True, VTK_UNSIGNED_CHAR, VTK_UNSIGNED_CHAR, "uint8", "newAttribute" ),
+ ( (), (), True, None, VTK_UNSIGNED_SHORT, "uint16", "newAttribute" ),
+ ( (), (), True, VTK_UNSIGNED_SHORT, VTK_UNSIGNED_SHORT, "uint16", "newAttribute" ),
+ ( (), (), True, None, VTK_UNSIGNED_INT, "uint32", "newAttribute" ),
+ ( (), (), True, VTK_UNSIGNED_INT, VTK_UNSIGNED_INT, "uint32", "newAttribute" ),
+ ( (), (), True, None, VTK_UNSIGNED_LONG_LONG, "uint64", "newAttribute" ),
+ ( (), (), True, VTK_UNSIGNED_LONG_LONG, VTK_UNSIGNED_LONG_LONG, "uint64", "newAttribute" ),
+ ( (), (), True, None, VTK_FLOAT, "float32", "newAttribute" ),
+ ( (), (), True, None, VTK_DOUBLE, "float64", "newAttribute" ),
+ ( (), (), True, VTK_DOUBLE, VTK_DOUBLE, "float64", "newAttribute" ),
+ ## With python scalar type.
+ ( (), (), True, None, VTK_LONG_LONG, "int", "newAttribute" ),
+ ( (), (), True, VTK_LONG_LONG, VTK_LONG_LONG, "int", "newAttribute" ),
+ ( (), (), True, None, VTK_DOUBLE, "float", "newAttribute" ),
+ ( (), (), True, VTK_DOUBLE, VTK_DOUBLE, "float", "newAttribute" ),
+ ] )
def test_createAttribute(
dataSetTest: vtkDataSet,
- arrayTest: npt.NDArray[ np.float64 ],
- arrayExpected: npt.NDArray[ np.float64 ],
- onpoints: bool,
+ getArrayWithSpeTypeValue: npt.NDArray[ Any ],
+ componentNames: tuple[ str, ...],
+ componentNamesTest: tuple[ str, ...],
+ onPoints: bool,
+ vtkDataType: int,
+ vtkDataTypeTest: int,
+ valueType: str,
+ attributeName: str,
) -> None:
"""Test creation of dataset in dataset from given array."""
- vtkDataSetTest: vtkDataSet = dataSetTest( "dataset" )
- componentNames: tuple[ str, str, str ] = ( "XX", "YY", "ZZ" )
- attributeName: str = "AttributeName"
+ dataSet: vtkDataSet = dataSetTest( "dataset" )
- arrayModifiers.createAttribute( vtkDataSetTest, arrayTest, attributeName, componentNames, onpoints )
-
- data: Union[ vtkPointData, vtkCellData ]
- if onpoints:
- data = vtkDataSetTest.GetPointData()
- else:
- data = vtkDataSetTest.GetCellData()
-
- createdAttribute: vtkDoubleArray = data.GetArray( attributeName )
- cnames: Tuple[ str, ...] = tuple( createdAttribute.GetComponentName( i ) for i in range( 3 ) )
-
- assert ( vnp.vtk_to_numpy( createdAttribute ) == arrayExpected ).all()
- assert cnames == componentNames
+ # Get a array with random values of a given type.
+ nbElements: int = dataSet.GetNumberOfPoints() if onPoints else dataSet.GetNumberOfCells()
+ nbComponentsTest: int = 1 if len( componentNamesTest ) == 0 else len( componentNamesTest )
+ npArrayTest: npt.NDArray[ Any ] = getArrayWithSpeTypeValue( nbComponentsTest, nbElements, valueType )
+ # Create the new attribute in the dataSet.
+ assert arrayModifiers.createAttribute( dataSet, npArrayTest, attributeName, componentNames, onPoints, vtkDataType )
-def test_copyAttribute( dataSetTest: vtkMultiBlockDataSet ) -> None:
+ # Get the created attribute.
+ data: Union[ vtkPointData, vtkCellData ]
+ data = dataSet.GetPointData() if onPoints else dataSet.GetCellData()
+ attributeCreated: vtkDataArray = data.GetArray( attributeName )
+
+ # Test the number of components and their names if multiple.
+ nbComponentsCreated: int = attributeCreated.GetNumberOfComponents()
+ assert nbComponentsCreated == nbComponentsTest
+ if nbComponentsTest > 1:
+ componentsNamesCreated: tuple[ str, ...] = tuple(
+ attributeCreated.GetComponentName( i ) for i in range( nbComponentsCreated ) )
+ assert componentsNamesCreated == componentNamesTest
+
+ # Test values and their types.
+ npArrayCreated: npt.NDArray[ Any ] = vnp.vtk_to_numpy( attributeCreated )
+ assert npArrayCreated.dtype == npArrayTest.dtype
+ assert ( npArrayCreated == npArrayTest ).all()
+
+ vtkDataTypeCreated: int = attributeCreated.GetDataType()
+ assert vtkDataTypeCreated == vtkDataTypeTest
+
+
+@pytest.mark.parametrize(
+ "attributeNameFrom, attributeNameTo, onPoints",
+ [
+ # Test with global attributes.
+ ( "GLOBAL_IDS_POINTS", "GLOBAL_IDS_POINTS_To", True ),
+ ( "GLOBAL_IDS_CELLS", 'GLOBAL_IDS_CELLS_To', False ),
+ # Test with partial attributes.
+ ( "CellAttribute", "CellAttributeTo", False ),
+ ( "PointAttribute", "PointAttributeTo", True ),
+ ] )
+def test_copyAttribute(
+ dataSetTest: vtkMultiBlockDataSet,
+ attributeNameFrom: str,
+ attributeNameTo: str,
+ onPoints: bool,
+) -> None:
"""Test copy of cell attribute from one multiblock to another."""
- objectFrom: vtkMultiBlockDataSet = dataSetTest( "multiblock" )
- objectTo: vtkMultiBlockDataSet = dataSetTest( "multiblock" )
-
- attributeFrom: str = "CellAttribute"
- attributeTo: str = "CellAttributeTO"
-
- arrayModifiers.copyAttribute( objectFrom, objectTo, attributeFrom, attributeTo )
-
- blockIndex: int = 0
- blockFrom: vtkDataSet = cast( vtkDataSet, objectFrom.GetBlock( blockIndex ) )
- blockTo: vtkDataSet = cast( vtkDataSet, objectTo.GetBlock( blockIndex ) )
-
- arrayFrom: npt.NDArray[ np.float64 ] = vnp.vtk_to_numpy( blockFrom.GetCellData().GetArray( attributeFrom ) )
- arrayTo: npt.NDArray[ np.float64 ] = vnp.vtk_to_numpy( blockTo.GetCellData().GetArray( attributeTo ) )
-
- assert ( arrayFrom == arrayTo ).all()
-
-
-def test_copyAttributeDataSet( dataSetTest: vtkDataSet, ) -> None:
- """Test copy of cell attribute from one dataset to another."""
- objectFrom: vtkDataSet = dataSetTest( "dataset" )
- objectTo: vtkDataSet = dataSetTest( "dataset" )
-
- attributNameFrom = "CellAttribute"
- attributNameTo = "COPYATTRIBUTETO"
-
- arrayModifiers.copyAttributeDataSet( objectFrom, objectTo, attributNameFrom, attributNameTo )
-
- arrayFrom: npt.NDArray[ np.float64 ] = vnp.vtk_to_numpy( objectFrom.GetCellData().GetArray( attributNameFrom ) )
- arrayTo: npt.NDArray[ np.float64 ] = vnp.vtk_to_numpy( objectTo.GetCellData().GetArray( attributNameTo ) )
+ multiBlockDataSetFrom: vtkMultiBlockDataSet = dataSetTest( "multiblock" )
+ multiBlockDataSetTo: vtkMultiBlockDataSet = dataSetTest( "emptymultiblock" )
+
+ # Copy the attribute from the multiBlockDataSetFrom to the multiBlockDataSetTo.
+ assert arrayModifiers.copyAttribute( multiBlockDataSetFrom, multiBlockDataSetTo, attributeNameFrom, attributeNameTo,
+ onPoints )
+
+ # Parse the two multiBlockDataSet and test if the attribute has been copied.
+ nbBlocks: int = multiBlockDataSetFrom.GetNumberOfBlocks()
+ for idBlock in range( nbBlocks ):
+ dataSetFrom: vtkDataSet = cast( vtkDataSet, multiBlockDataSetFrom.GetBlock( idBlock ) )
+ dataSetTo: vtkDataSet = cast( vtkDataSet, multiBlockDataSetTo.GetBlock( idBlock ) )
+ dataFrom: Union[ vtkPointData, vtkCellData ]
+ dataTo: Union[ vtkPointData, vtkCellData ]
+ if onPoints:
+ dataFrom = dataSetFrom.GetPointData()
+ dataTo = dataSetTo.GetPointData()
+ else:
+ dataFrom = dataSetFrom.GetCellData()
+ dataTo = dataSetTo.GetCellData()
- assert ( arrayFrom == arrayTo ).all()
+ attributeExistTest: int = dataFrom.HasArray( attributeNameFrom )
+ attributeExistCopied: int = dataTo.HasArray( attributeNameTo )
+ assert attributeExistCopied == attributeExistTest
-@pytest.mark.parametrize( "attributeName, onpoints", [
+@pytest.mark.parametrize( "attributeNameFrom, attributeNameTo, onPoints", [
+ ( "CellAttribute", "CellAttributeTo", False ),
+ ( "PointAttribute", "PointAttributeTo", True ),
+] )
+def test_copyAttributeDataSet(
+ dataSetTest: vtkDataSet,
+ attributeNameFrom: str,
+ attributeNameTo: str,
+ onPoints: bool,
+) -> None:
+ """Test copy of an attribute from one dataset to another."""
+ dataSetFrom: vtkDataSet = dataSetTest( "dataset" )
+ dataSetTo: vtkDataSet = dataSetTest( "emptydataset" )
+
+ # Copy the attribute from the dataSetFrom to the dataSetTo.
+ assert arrayModifiers.copyAttributeDataSet( dataSetFrom, dataSetTo, attributeNameFrom, attributeNameTo, onPoints )
+
+ # Get the tested attribute and its copy.
+ dataFrom: Union[ vtkPointData, vtkCellData ]
+ dataTo: Union[ vtkPointData, vtkCellData ]
+ if onPoints:
+ dataFrom = dataSetFrom.GetPointData()
+ dataTo = dataSetTo.GetPointData()
+ else:
+ dataFrom = dataSetFrom.GetCellData()
+ dataTo = dataSetTo.GetCellData()
+ attributeTest: vtkDataArray = dataFrom.GetArray( attributeNameFrom )
+ attributeCopied: vtkDataArray = dataTo.GetArray( attributeNameTo )
+
+ # Test the number of components and their names if multiple.
+ nbComponentsTest: int = attributeTest.GetNumberOfComponents()
+ nbComponentsCopied: int = attributeCopied.GetNumberOfComponents()
+ assert nbComponentsCopied == nbComponentsTest
+ if nbComponentsTest > 1:
+ componentsNamesTest: tuple[ str, ...] = tuple(
+ attributeTest.GetComponentName( i ) for i in range( nbComponentsTest ) )
+ componentsNamesCopied: tuple[ str, ...] = tuple(
+ attributeCopied.GetComponentName( i ) for i in range( nbComponentsCopied ) )
+ assert componentsNamesCopied == componentsNamesTest
+
+ # Test values and their types.
+ npArrayTest: npt.NDArray[ Any ] = vnp.vtk_to_numpy( attributeTest )
+ npArrayCopied: npt.NDArray[ Any ] = vnp.vtk_to_numpy( attributeCopied )
+ assert npArrayCopied.dtype == npArrayTest.dtype
+ assert ( npArrayCopied == npArrayTest ).all()
+
+ vtkDataTypeTest: int = attributeTest.GetDataType()
+ vtkDataTypeCopied: int = attributeCopied.GetDataType()
+ assert vtkDataTypeCopied == vtkDataTypeTest
+
+
+@pytest.mark.parametrize( "attributeName, onPoints", [
( "CellAttribute", False ),
( "PointAttribute", True ),
] )
def test_renameAttributeMultiblock(
dataSetTest: vtkMultiBlockDataSet,
attributeName: str,
- onpoints: bool,
+ onPoints: bool,
) -> None:
"""Test renaming attribute in a multiblock dataset."""
vtkMultiBlockDataSetTest: vtkMultiBlockDataSet = dataSetTest( "multiblock" )
@@ -252,11 +492,11 @@ def test_renameAttributeMultiblock(
vtkMultiBlockDataSetTest,
attributeName,
newAttributeName,
- onpoints,
+ onPoints,
)
block: vtkDataSet = cast( vtkDataSet, vtkMultiBlockDataSetTest.GetBlock( 0 ) )
data: Union[ vtkPointData, vtkCellData ]
- if onpoints:
+ if onPoints:
data = block.GetPointData()
assert data.HasArray( attributeName ) == 0
assert data.HasArray( newAttributeName ) == 1
@@ -267,11 +507,11 @@ def test_renameAttributeMultiblock(
assert data.HasArray( newAttributeName ) == 1
-@pytest.mark.parametrize( "attributeName, onpoints", [ ( "CellAttribute", False ), ( "PointAttribute", True ) ] )
+@pytest.mark.parametrize( "attributeName, onPoints", [ ( "CellAttribute", False ), ( "PointAttribute", True ) ] )
def test_renameAttributeDataSet(
dataSetTest: vtkDataSet,
attributeName: str,
- onpoints: bool,
+ onPoints: bool,
) -> None:
"""Test renaming an attribute in a dataset."""
vtkDataSetTest: vtkDataSet = dataSetTest( "dataset" )
@@ -279,8 +519,8 @@ def test_renameAttributeDataSet(
arrayModifiers.renameAttribute( object=vtkDataSetTest,
attributeName=attributeName,
newAttributeName=newAttributeName,
- onPoints=onpoints )
- if onpoints:
+ onPoints=onPoints )
+ if onPoints:
assert vtkDataSetTest.GetPointData().HasArray( attributeName ) == 0
assert vtkDataSetTest.GetPointData().HasArray( newAttributeName ) == 1
diff --git a/geos-posp/src/PVplugins/PVAttributeMapping.py b/geos-posp/src/PVplugins/PVAttributeMapping.py
index a862b9a9..39b17b51 100644
--- a/geos-posp/src/PVplugins/PVAttributeMapping.py
+++ b/geos-posp/src/PVplugins/PVAttributeMapping.py
@@ -21,9 +21,7 @@
from geos.mesh.utils.arrayModifiers import fillPartialAttributes
from geos.mesh.utils.multiblockModifiers import mergeBlocks
from geos.mesh.utils.arrayHelpers import (
- getAttributeSet,
- getNumberOfComponents,
-)
+ getAttributeSet, )
from geos_posp.visu.PVUtils.checkboxFunction import ( # type: ignore[attr-defined]
createModifiedCallback, )
from geos_posp.visu.PVUtils.paraviewTreatments import getArrayChoices
@@ -192,8 +190,7 @@ def RequestData(
outData.ShallowCopy( clientMesh )
attributeNames: set[ str ] = set( getArrayChoices( self.a02GetAttributeToTransfer() ) )
for attributeName in attributeNames:
- nbComponents = getNumberOfComponents( serverMesh, attributeName, False )
- fillPartialAttributes( serverMesh, attributeName, nbComponents, False )
+ fillPartialAttributes( serverMesh, attributeName, False )
mergedServerMesh: vtkUnstructuredGrid
if isinstance( serverMesh, vtkUnstructuredGrid ):
diff --git a/geos-posp/src/geos_posp/filters/AttributeMappingFromCellCoords.py b/geos-posp/src/geos_posp/filters/AttributeMappingFromCellCoords.py
index 5f23d1b6..4d9500b1 100644
--- a/geos-posp/src/geos_posp/filters/AttributeMappingFromCellCoords.py
+++ b/geos-posp/src/geos_posp/filters/AttributeMappingFromCellCoords.py
@@ -219,7 +219,7 @@ def transferAttributes( self: Self ) -> bool:
for i in range( nbComponents ):
componentNames.append( array.GetComponentName( i ) )
newArray: vtkDataArray = createEmptyAttribute( self.m_clientMesh, attributeName, tuple( componentNames ),
- dataType, False )
+ dataType )
nanValues: list[ float ] = [ np.nan for _ in range( nbComponents ) ]
for indexClient in range( self.m_clientMesh.GetNumberOfCells() ):
indexServer: int = self.m_cellMap[ indexClient ]
diff --git a/geos-posp/src/geos_posp/filters/GeosBlockMerge.py b/geos-posp/src/geos_posp/filters/GeosBlockMerge.py
index 09b0a879..8d24b593 100644
--- a/geos-posp/src/geos_posp/filters/GeosBlockMerge.py
+++ b/geos-posp/src/geos_posp/filters/GeosBlockMerge.py
@@ -365,14 +365,9 @@ def mergeChildBlocks( self: Self, compositeBlock: vtkMultiBlockDataSet ) -> vtkU
Returns:
vtkUnstructuredGrid: merged block
"""
- # fill partial cell attributes in all children blocks
- if not fillAllPartialAttributes( compositeBlock, False ):
- self.m_logger.warning( "Some partial cell attributes may not have been " + "propagated to the whole mesh." )
-
- # # fill partial point attributes in all children blocks
- if not fillAllPartialAttributes( compositeBlock, True ):
- self.m_logger.warning( "Some partial point attributes may not have been " +
- "propagated to the whole mesh." )
+ # fill partial attributes in all children blocks
+ if not fillAllPartialAttributes( compositeBlock ):
+ self.m_logger.warning( "Some partial attributes may not have been propagated to the whole mesh." )
# merge blocks
return mergeBlocks( compositeBlock )