Skip to content

Commit e7d0ec3

Browse files
committed
Fix minor typos in the following files: - [x] `GroupTheory/Nilpotent.lean` - [x] `GroupTheory/PushoutI.lean` - [x] `SetTheory/Cardinal/ENat.lean` - [x] `SetTheory/Cardinal/Subfield.lean` - [x] `RepresentationTheory/Action/Basic.lean` - [x] `RepresentationTheory/Action/Limits.lean` - [x] `Logic/Function/OfArity.lean`
1 parent aa20ff6 commit e7d0ec3

File tree

7 files changed

+11
-11
lines changed

7 files changed

+11
-11
lines changed

Mathlib/GroupTheory/Nilpotent.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -53,7 +53,7 @@ subgroup `G` of `G`, and `⊥` denotes the trivial subgroup `{1}`.
5353
* `nilpotent_iff_finite_descending_central_series` : `G` is nilpotent iff some descending central
5454
series reaches `⊥`.
5555
* `nilpotent_iff_lower` : `G` is nilpotent iff the lower central series reaches `⊥`.
56-
* The `nilpotency_class` can likeways be obtained from these equivalent
56+
* The `nilpotency_class` can likewise be obtained from these equivalent
5757
definitions, see `least_ascending_central_series_length_eq_nilpotencyClass`,
5858
`least_descending_central_series_length_eq_nilpotencyClass` and
5959
`lowerCentralSeries_length_eq_nilpotencyClass`.
@@ -887,7 +887,7 @@ theorem isNilpotent_of_product_of_sylow_group
887887
#align is_nilpotent_of_product_of_sylow_group isNilpotent_of_product_of_sylow_group
888888

889889
/-- A finite group is nilpotent iff the normalizer condition holds, and iff all maximal groups are
890-
normal and iff all sylow groups are normal and iff the group is the direct product of its sylow
890+
normal and iff all Sylow groups are normal and iff the group is the direct product of its Sylow
891891
groups. -/
892892
theorem isNilpotent_of_finite_tFAE :
893893
List.TFAE

Mathlib/GroupTheory/PushoutI.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -143,7 +143,7 @@ theorem hom_ext_nonempty [hn : Nonempty ι]
143143
rw [← of_comp_eq_base i, ← MonoidHom.comp_assoc, h, MonoidHom.comp_assoc]
144144

145145
/-- The equivalence that is part of the universal property of the pushout. A hom out of
146-
the pushout is just a morphism out of all groups in the pushout that satsifies a commutativity
146+
the pushout is just a morphism out of all groups in the pushout that satisfies a commutativity
147147
condition. -/
148148
@[simps]
149149
def homEquiv :

Mathlib/Logic/Function/OfArity.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ import Mathlib.Mathport.Rename
1010
/-! # Function types of a given arity
1111
1212
This provides `FunctionOfArity`, such that `OfArity α β 2 = α → α → β`.
13-
Note that it is often preferrable to use `(Fin n → α) → β` in place of `OfArity n α β`.
13+
Note that it is often preferable to use `(Fin n → α) → β` in place of `OfArity n α β`.
1414
1515
## Main definitions
1616

Mathlib/RepresentationTheory/Action/Basic.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -176,7 +176,7 @@ set_option linter.uppercaseLean3 false in
176176

177177
namespace FunctorCategoryEquivalence
178178

179-
/-- Auxilliary definition for `functorCategoryEquivalence`. -/
179+
/-- Auxiliary definition for `functorCategoryEquivalence`. -/
180180
@[simps]
181181
def functor : Action V G ⥤ SingleObj G ⥤ V where
182182
obj M :=
@@ -190,7 +190,7 @@ def functor : Action V G ⥤ SingleObj G ⥤ V where
190190
set_option linter.uppercaseLean3 false in
191191
#align Action.functor_category_equivalence.functor Action.FunctorCategoryEquivalence.functor
192192

193-
/-- Auxilliary definition for `functorCategoryEquivalence`. -/
193+
/-- Auxiliary definition for `functorCategoryEquivalence`. -/
194194
@[simps]
195195
def inverse : (SingleObj G ⥤ V) ⥤ Action V G where
196196
obj F :=
@@ -205,14 +205,14 @@ def inverse : (SingleObj G ⥤ V) ⥤ Action V G where
205205
set_option linter.uppercaseLean3 false in
206206
#align Action.functor_category_equivalence.inverse Action.FunctorCategoryEquivalence.inverse
207207

208-
/-- Auxilliary definition for `functorCategoryEquivalence`. -/
208+
/-- Auxiliary definition for `functorCategoryEquivalence`. -/
209209
@[simps!]
210210
def unitIso : 𝟭 (Action V G) ≅ functor ⋙ inverse :=
211211
NatIso.ofComponents fun M => mkIso (Iso.refl _)
212212
set_option linter.uppercaseLean3 false in
213213
#align Action.functor_category_equivalence.unit_iso Action.FunctorCategoryEquivalence.unitIso
214214

215-
/-- Auxilliary definition for `functorCategoryEquivalence`. -/
215+
/-- Auxiliary definition for `functorCategoryEquivalence`. -/
216216
@[simps!]
217217
def counitIso : inverse ⋙ functor ≅ 𝟭 (SingleObj G ⥤ V) :=
218218
NatIso.ofComponents fun M => NatIso.ofComponents fun X => Iso.refl _

Mathlib/RepresentationTheory/Action/Limits.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -334,7 +334,7 @@ end Linear
334334

335335
section Abelian
336336

337-
/-- Auxilliary construction for the `Abelian (Action V G)` instance. -/
337+
/-- Auxiliary construction for the `Abelian (Action V G)` instance. -/
338338
def abelianAux : Action V G ≌ ULift.{u} (SingleObj G) ⥤ V :=
339339
(functorCategoryEquivalence V G).trans (Equivalence.congrLeft ULift.equivalence)
340340
set_option linter.uppercaseLean3 false in

Mathlib/SetTheory/Cardinal/ENat.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@ import Mathlib.Algebra.Order.Hom.Ring
1111
1212
In this file we define a coercion `Cardinal.ofENat : ℕ∞ → Cardinal`
1313
and a projection `Cardinal.toENat : Cardinal →+*o ℕ∞`.
14-
We also prove basic theorems about these definitons.
14+
We also prove basic theorems about these definitions.
1515
1616
## Implementation notes
1717

Mathlib/SetTheory/Cardinal/Subfield.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@ import Mathlib.Tactic.FinCases
1414
generated by a set is bounded by the cardinality of the set unless it is finite.
1515
1616
The method used to prove this (via `WType`) can be easily generalized to other algebraic
17-
structures, but those cardinalites can usually be obtained by other means, using some
17+
structures, but those cardinalities can usually be obtained by other means, using some
1818
explicit universal objects.
1919
2020
-/

0 commit comments

Comments
 (0)