diff --git a/.gitignore b/.gitignore
new file mode 100644
index 00000000..fc0d998c
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,12 @@
+__pycache__
+*.egg-info/
+*.eggs/
+*.data
+
+#neuralnetwork-generated
+data
+
+old
+deploy-notes
+venv
+secret.py
diff --git a/README.md b/README.md
index 414438d3..c5d3f305 100644
--- a/README.md
+++ b/README.md
@@ -1,66 +1,49 @@
-# ReWoTes
+# mlbands
-REal WOrld TEstS
+A python package that implements automatic prediction of electronic band gaps for a set of materials based on training data.
-## Overview
-This repository contains example test assignments used during our hiring process.
+## Installation
-We find that regular job interview questions can often be misleading and so use more engaged "real-world" examples instead.
+```ruby
+pip install --upgrade mlbands
+```
-Each file represents an assignment similar to what one would get when hired.
+## Documentation and Usage on Google Colab (click below)
-| Focus | ReWote | Keywords |
-| ---------------| --------------------------| ------------------------------- |
-| Comp. Science | [Convergence Tracker](Convergence-Tracker.md) | Python, OOD, DFT, Planewaves |
-| Comp. Science | [Basis Set Selector](Basis-Set-Selector.md) | Python, OOD, DFT, Local-orbital |
-| Data. Science | [ML Property Predict](ML-Band-Gaps.md) | Python, ML Models, Scikit, Featurization |
-| Front-End / UX | [Materials Designer](Materials-Designer.md) | ReactJS / UX Design, ThreeJS |
-| Front-End / UX | [Flowchart Designer](Flowchart-Designer.md) | ReactJS / UX Design, DAG |
-| Back-End / Ops | [Parallel Uploader](Parallel-File-Uploader.md) | Python, OOD, Threading, Objectstore |
-| CI/CD, DevOps | [End-to-End Tests](End-To-End-Tests.md) | BDD tests, CI/CD workflows, Cypress |
-| HPC, Cloud Inf | [Cloud HPC Bench.](Cloud-Infrastructure.md) | HPC Cluster, Linpack, Benchmarks |
-| HPC, Containers| [Containerized HPC](Containerization-HPC.md) | HPC Cluster, Containers, Benchmarks |
+
+
-## Usage
-We suggest the following flow:
-1. [Fork](https://docs.github.com/en/free-pro-team@latest/github/getting-started-with-github/fork-a-repo) this repository on GitHub
-2. Create a branch using your GitHub username as a branch name
-3. Create a subfolder with your GitHub username
-4. Copy one of the ReWoTe suggestions (`.md` files) to `README.md` in that subfolder and modify the content of the ReWoTe as necessary
-5. Introduce any changes under the subfolder
-6. Submit a [pull request](https://docs.github.com/en/free-pro-team@latest/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request-from-a-fork) into the `dev` branch of this repository
+# ML Band Gaps (Materials)
-See [dev branch](https://github.com/Exabyte-io/rewotes/tree/dev) also.
+> Ideal candidate: skilled ML data scientist with solid knowledge of materials science.
-## Notes
+# Overview
-Examples listed here are only meant as guidelines and do not necessarily reflect on the type of work to be performed at the company. Modifications to the individual assignments with an advance notice are encouraged.
+The aim of this task is to create a python package that implements automatic prediction of electronic band gaps for a set of materials based on training data.
-We will screen for the ability to (1) pick up new concepts quickly, (2) implement a working proof-of-concept solution, and (3) outline how the PoC can become more mature. We value attention to details and modularity.
+# User story
+As a user of this software I can predict the value of an electronic band gap after passing training data and structural information about the target material.
-## Hiring process
+# Requirements
-Our hiring process in more details:
+- suggest the bandgap values for a set of materials designated by their crystallographic and stoichiometric properties
+- the code shall be written in a way that can facilitate easy addition of other characteristics extracted from simulations (forces, pressures, phonon frequencies etc)
-| Stage | Target Duration | Topic |
-| ----------------- | ----------------- | ------------------------------ |
-| 0. Email screen | | why mat3ra.com / exabyte.io |
-| 1. Phone screen | 15-20 min | career goals, basic skillset |
-| 2. ReWoTe | 1-2h x 2-5 days | real-world work/thought process|
-| 3. On-site meet | 3-4 x 30 min | personality fit |
-| 4. Discuss offer | 30 min | cash/equity/benefits |
-| 5. References | 2 x 15 min | sanity check |
-| 6. Decision | | when to start |
+# Expectations
-TOTAL: ~2 weeks tentative.
+- the code shall be able to suggest realistic values for slightly modified geometry sets - eg. trained on Si and Ge it should suggest the value of bandgap for Si49Ge51 to be between those of Si and Ge
+- modular and object-oriented implementation
+- commit early and often - at least once per 24 hours
+# Timeline
-## Contact info
+We leave exact timing to the candidate. Must fit Within 5 days total.
-With any questions about this repository or our hiring process please contact us at info@mat3ra.com.
+# Notes
-© 2022 Exabyte Inc.
+- use a designated github repository for version control
+- suggested source of training data: materialsproject.org
diff --git a/Basis-Set-Selector.md b/all-rewotes/Basis-Set-Selector.md
similarity index 100%
rename from Basis-Set-Selector.md
rename to all-rewotes/Basis-Set-Selector.md
diff --git a/Cloud-Infrastructure.md b/all-rewotes/Cloud-Infrastructure.md
similarity index 100%
rename from Cloud-Infrastructure.md
rename to all-rewotes/Cloud-Infrastructure.md
diff --git a/Containerization-HPC.md b/all-rewotes/Containerization-HPC.md
similarity index 100%
rename from Containerization-HPC.md
rename to all-rewotes/Containerization-HPC.md
diff --git a/Convergence-Tracker.md b/all-rewotes/Convergence-Tracker.md
similarity index 100%
rename from Convergence-Tracker.md
rename to all-rewotes/Convergence-Tracker.md
diff --git a/End-to-End-Tests.md b/all-rewotes/End-to-End-Tests.md
similarity index 100%
rename from End-to-End-Tests.md
rename to all-rewotes/End-to-End-Tests.md
diff --git a/Flowchart-Designer.md b/all-rewotes/Flowchart-Designer.md
similarity index 100%
rename from Flowchart-Designer.md
rename to all-rewotes/Flowchart-Designer.md
diff --git a/ML-Band-Gaps.md b/all-rewotes/ML-Band-Gaps.md
similarity index 100%
rename from ML-Band-Gaps.md
rename to all-rewotes/ML-Band-Gaps.md
diff --git a/Materials-Designer.md b/all-rewotes/Materials-Designer.md
similarity index 100%
rename from Materials-Designer.md
rename to all-rewotes/Materials-Designer.md
diff --git a/Parallel-File-Uploader.md b/all-rewotes/Parallel-File-Uploader.md
similarity index 100%
rename from Parallel-File-Uploader.md
rename to all-rewotes/Parallel-File-Uploader.md
diff --git a/dist/mlbands-1.0.0-py3-none-any.whl b/dist/mlbands-1.0.0-py3-none-any.whl
new file mode 100644
index 00000000..54f0e188
Binary files /dev/null and b/dist/mlbands-1.0.0-py3-none-any.whl differ
diff --git a/dist/mlbands-1.0.0.tar.gz b/dist/mlbands-1.0.0.tar.gz
new file mode 100644
index 00000000..99dc3765
Binary files /dev/null and b/dist/mlbands-1.0.0.tar.gz differ
diff --git a/dist/mlbands-1.0.1-py3-none-any.whl b/dist/mlbands-1.0.1-py3-none-any.whl
new file mode 100644
index 00000000..693d4cf4
Binary files /dev/null and b/dist/mlbands-1.0.1-py3-none-any.whl differ
diff --git a/dist/mlbands-1.0.1.tar.gz b/dist/mlbands-1.0.1.tar.gz
new file mode 100644
index 00000000..7944ac01
Binary files /dev/null and b/dist/mlbands-1.0.1.tar.gz differ
diff --git a/draft/GdSnPd.cif b/draft/GdSnPd.cif
new file mode 100644
index 00000000..6d7ad1a7
--- /dev/null
+++ b/draft/GdSnPd.cif
@@ -0,0 +1,38 @@
+# generated using pymatgen
+data_GdSnPd
+_symmetry_space_group_name_H-M 'P 1'
+_cell_length_a 4.65008947
+_cell_length_b 7.31311105
+_cell_length_c 7.95465153
+_cell_angle_alpha 90.00000000
+_cell_angle_beta 90.00000000
+_cell_angle_gamma 90.00000000
+_symmetry_Int_Tables_number 1
+_chemical_formula_structural GdSnPd
+_chemical_formula_sum 'Gd4 Sn4 Pd4'
+_cell_volume 270.51081729
+_cell_formula_units_Z 4
+loop_
+ _symmetry_equiv_pos_site_id
+ _symmetry_equiv_pos_as_xyz
+ 1 'x, y, z'
+loop_
+ _atom_site_type_symbol
+ _atom_site_label
+ _atom_site_symmetry_multiplicity
+ _atom_site_fract_x
+ _atom_site_fract_y
+ _atom_site_fract_z
+ _atom_site_occupancy
+ Gd Gd0 1 0.25000000 0.51062534 0.20448969 1
+ Gd Gd1 1 0.25000000 0.01062534 0.29551031 1
+ Gd Gd2 1 0.75000000 0.48937466 0.79551031 1
+ Gd Gd3 1 0.75000000 0.98937466 0.70448969 1
+ Sn Sn4 1 0.25000000 0.69150951 0.58737792 1
+ Sn Sn5 1 0.25000000 0.19150951 0.91262208 1
+ Sn Sn6 1 0.75000000 0.30849049 0.41262208 1
+ Sn Sn7 1 0.75000000 0.80849049 0.08737792 1
+ Pd Pd8 1 0.25000000 0.79706757 0.91570644 1
+ Pd Pd9 1 0.25000000 0.29706757 0.58429356 1
+ Pd Pd10 1 0.75000000 0.20293243 0.08429356 1
+ Pd Pd11 1 0.75000000 0.70293243 0.41570644 1
diff --git a/draft/GdSnPd.json b/draft/GdSnPd.json
new file mode 100644
index 00000000..743ec76f
--- /dev/null
+++ b/draft/GdSnPd.json
@@ -0,0 +1,129 @@
+{
+ "@module": "pymatgen.core.structure",
+ "@class": "Structure",
+ "charge": 0,
+ "lattice": {
+ "matrix": [
+ [4.65008947, 0.0, 2.847358592592156e-16],
+ [1.1760379519337024e-15, 7.31311105014398, 4.477989019683982e-16],
+ [0.0, 0.0, 7.954651530160617]
+ ],
+ "pbc": [true, true, true],
+ "a": 4.65008947,
+ "b": 7.31311105014398,
+ "c": 7.954651530160617,
+ "alpha": 90.0,
+ "beta": 90.0,
+ "gamma": 90.0,
+ "volume": 270.51081728514777
+ },
+ "sites": [{
+ "species": [{
+ "element": "Gd",
+ "occu": 1
+ }],
+ "abc": [0.25, 0.51062534, 0.2044896850000001],
+ "xyz": [1.1625223675000007, 3.734259816437527, 1.6266441856873135],
+ "label": "Gd",
+ "properties": {}
+ }, {
+ "species": [{
+ "element": "Gd",
+ "occu": 1
+ }],
+ "abc": [0.25, 0.010625340000000039, 0.2955103149999999],
+ "xyz": [1.1625223675, 0.07770429136553712, 2.350681579392995],
+ "label": "Gd",
+ "properties": {}
+ }, {
+ "species": [{
+ "element": "Gd",
+ "occu": 1
+ }],
+ "abc": [0.75, 0.48937465999999996, 0.7955103149999999],
+ "xyz": [3.4875671025000003, 3.5788512337064526, 6.328007344473304],
+ "label": "Gd",
+ "properties": {}
+ }, {
+ "species": [{
+ "element": "Gd",
+ "occu": 1
+ }],
+ "abc": [0.75, 0.98937466, 0.7044896850000001],
+ "xyz": [3.4875671025000012, 7.235406758778443, 5.603969950767622],
+ "label": "Gd",
+ "properties": {}
+ }, {
+ "species": [{
+ "element": "Sn",
+ "occu": 1
+ }],
+ "abc": [0.25, 0.69150951, 0.5873779150000001],
+ "xyz": [1.162522367500001, 5.057085838860649, 4.672386630337304],
+ "label": "Sn",
+ "properties": {}
+ }, {
+ "species": [{
+ "element": "Sn",
+ "occu": 1
+ }],
+ "abc": [0.25, 0.19150950999999994, 0.9126220849999999],
+ "xyz": [1.1625223675000003, 1.4005303137886584, 7.259590664903621],
+ "label": "Sn",
+ "properties": {}
+ }, {
+ "species": [{
+ "element": "Sn",
+ "occu": 1
+ }],
+ "abc": [0.75, 0.30849048999999995, 0.41262208499999986],
+ "xyz": [3.4875671025000003, 2.2560252112833306, 3.2822648998233133],
+ "label": "Sn",
+ "properties": {}
+ }, {
+ "species": [{
+ "element": "Sn",
+ "occu": 1
+ }],
+ "abc": [0.75, 0.80849049, 0.08737791500000025],
+ "xyz": [3.487567102500001, 5.91258073635532, 0.6950608652569968],
+ "label": "Sn",
+ "properties": {}
+ }, {
+ "species": [{
+ "element": "Pd",
+ "occu": 1
+ }],
+ "abc": [0.25, 0.79706757, 0.915706435],
+ "xyz": [1.162522367500001, 5.82904365387841, 7.284125594350674],
+ "label": "Pd",
+ "properties": {}
+ }, {
+ "species": [{
+ "element": "Pd",
+ "occu": 1
+ }],
+ "abc": [0.25, 0.29706756999999984, 0.584293565],
+ "xyz": [1.1625223675000005, 2.172488128806419, 4.647851700890252],
+ "label": "Pd",
+ "properties": {}
+ }, {
+ "species": [{
+ "element": "Pd",
+ "occu": 1
+ }],
+ "abc": [0.75, 0.20293243000000005, 0.08429356499999996],
+ "xyz": [3.4875671025000003, 1.4840673962655702, 0.6705259358099435],
+ "label": "Pd",
+ "properties": {}
+ }, {
+ "species": [{
+ "element": "Pd",
+ "occu": 1
+ }],
+ "abc": [0.75, 0.70293243, 0.41570643500000015],
+ "xyz": [3.487567102500001, 5.14062292133756, 3.306799829270367],
+ "label": "Pd",
+ "properties": {}
+ }]
+}
diff --git a/draft/ML_LeNet5-example.py b/draft/ML_LeNet5-example.py
new file mode 100644
index 00000000..1ea7aee0
--- /dev/null
+++ b/draft/ML_LeNet5-example.py
@@ -0,0 +1,136 @@
+# Load in relevant libraries, and alias where appropriate
+import torch
+import torch.nn as nn
+import torchvision
+import torchvision.transforms as transforms
+
+from mlbands.neuralnet import LeNet5
+
+
+def ML_run():
+ # Define relevant variables for the ML task
+ batch_size = 64
+ num_classes = 10
+ learning_rate = 0.001
+ num_epochs = 10
+
+ # Device will determine whether to run the training on GPU or CPU.
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+
+
+
+ #Loading the dataset and preprocessing
+ train_dataset = torchvision.datasets.MNIST(root = './data',
+ train = True,
+ transform = transforms.Compose([
+ transforms.Resize((32,32)),
+ transforms.ToTensor(),
+ transforms.Normalize(mean = (0.1307,), std = (0.3081,))]),
+ download = True)
+
+
+ test_dataset = torchvision.datasets.MNIST(root = './data',
+ train = False,
+ transform = transforms.Compose([
+ transforms.Resize((32,32)),
+ transforms.ToTensor(),
+ transforms.Normalize(mean = (0.1325,), std = (0.3105,))]),
+ download=True)
+
+
+ train_loader = torch.utils.data.DataLoader(dataset = train_dataset,
+ batch_size = batch_size,
+ shuffle = True)
+
+
+ test_loader = torch.utils.data.DataLoader(dataset = test_dataset,
+ batch_size = batch_size,
+ shuffle = True)
+
+
+ # #Defining the convolutional neural network
+ # class LeNet5(nn.Module):
+ # def __init__(self, num_classes):
+ # super(LeNet5, self).__init__()
+ # self.layer1 = nn.Sequential(
+ # nn.Conv2d(1, 6, kernel_size=5, stride=1, padding=0),
+ # nn.BatchNorm2d(6),
+ # nn.ReLU(),
+ # nn.MaxPool2d(kernel_size = 2, stride = 2))
+ # self.layer2 = nn.Sequential(
+ # nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0),
+ # nn.BatchNorm2d(16),
+ # nn.ReLU(),
+ # nn.MaxPool2d(kernel_size = 2, stride = 2))
+ # self.fc = nn.Linear(400, 120)
+ # self.relu = nn.ReLU()
+ # self.fc1 = nn.Linear(120, 84)
+ # self.relu1 = nn.ReLU()
+ # self.fc2 = nn.Linear(84, num_classes)
+
+ # def forward(self, x):
+ # out = self.layer1(x)
+ # out = self.layer2(out)
+ # out = out.reshape(out.size(0), -1)
+ # out = self.fc(out)
+ # out = self.relu(out)
+ # out = self.fc1(out)
+ # out = self.relu1(out)
+ # out = self.fc2(out)
+ # return out
+
+
+ model = LeNet5(num_classes).to(device)
+
+ #Setting the loss function
+ cost = nn.CrossEntropyLoss()
+
+ #Setting the optimizer with the model parameters and learning rate
+ optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
+
+ #this is defined to print how many steps are remaining when training
+ total_step = len(train_loader)
+
+
+ # Training the model
+
+ total_step = len(train_loader)
+ for epoch in range(num_epochs):
+ for i, (images, labels) in enumerate(train_loader):
+ images = images.to(device)
+ labels = labels.to(device)
+
+ #Forward pass
+ outputs = model(images)
+ loss = cost(outputs, labels)
+
+ # Backward and optimize
+ optimizer.zero_grad()
+ loss.backward()
+ optimizer.step()
+
+ if (i+1) % 400 == 0:
+ print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
+ .format(epoch+1, num_epochs, i+1, total_step, loss.item()))
+
+
+
+
+ # Test the model
+ # In test phase, we don't need to compute gradients (for memory efficiency)
+
+ with torch.no_grad():
+ correct = 0
+ total = 0
+ for images, labels in test_loader:
+ images = images.to(device)
+ labels = labels.to(device)
+ outputs = model(images)
+ _, predicted = torch.max(outputs.data, 1)
+ total += labels.size(0)
+ correct += (predicted == labels).sum().item()
+
+ print('Accuracy of the network on the 10000 test images: {} %'.format(100 * correct / total))
+
+
+# ML_run()
\ No newline at end of file
diff --git a/draft/README.md b/draft/README.md
new file mode 100644
index 00000000..79e78ea3
--- /dev/null
+++ b/draft/README.md
@@ -0,0 +1,10 @@
+# in development
+
+Currently running tests with data from https://materialsproject.org/materials/mp-1103503
+GdSnPd
+mp-1103503
+
+## running package manager (pipenv)
+https://medium.com/dsckiit/managing-dependencies-in-python-a580ded4f67
+
+To start environment, run `pipenv shell`
diff --git a/draft/diffraction-patterns.py b/draft/diffraction-patterns.py
new file mode 100644
index 00000000..e0179f71
--- /dev/null
+++ b/draft/diffraction-patterns.py
@@ -0,0 +1,37 @@
+from mp_api.client import MPRester
+from pymatgen.analysis.diffraction.xrd import XRDCalculator
+from pymatgen.symmetry.analyzer import SpacegroupAnalyzer
+import secret
+
+with MPRester(api_key=secret.API_KEY) as mpr:
+ # first retrieve the relevant structure
+ structure = mpr.get_structure_by_material_id('mp-1103503')
+
+# important to use the conventional structure to ensure
+# that peaks are labelled with the conventional Miller indices
+sga = SpacegroupAnalyzer(structure)
+conventional_structure = sga.get_conventional_standard_structure()
+
+# this example shows how to obtain an XRD diffraction pattern
+# these patterns are calculated on-the-fly from the structure
+calculator = XRDCalculator(wavelength='CuKa')
+pattern = calculator.get_pattern(conventional_structure)
+
+# print('\nstructure:\n{}\n\nsga:\n{}\n\nconventional structure:\n{}'.\
+# format(structure,sga,conventional_structure))
+
+# print('\npattern:\n',pattern)
+
+
+# print(conventional_structure)
+
+print(conventional_structure.lattice)
+print(conventional_structure.sites) #https://pymatgen.org/pymatgen.core.sites.html?highlight=periodicsite#pymatgen.core.sites.PeriodicSite
+
+Nsites = len(conventional_structure.sites)
+for i in range(Nsites):
+ print('\n\n')
+ # print(conventional_structure.sites[i])
+ print(conventional_structure.sites[i].species)
+ print(conventional_structure.sites[i].coords)
+ print(conventional_structure.sites[i].frac_coords)
diff --git a/draft/mp-1103503 b/draft/mp-1103503
new file mode 100644
index 00000000..523e6cf7
--- /dev/null
+++ b/draft/mp-1103503
@@ -0,0 +1,239 @@
+
+
+
+
+
+
+
+
+
+
+
+ mp-1103503: GdSnPd (Orthorhombic, Pnma, 62)
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/draft/thermo.py b/draft/thermo.py
new file mode 100644
index 00000000..1c2bbf96
--- /dev/null
+++ b/draft/thermo.py
@@ -0,0 +1,14 @@
+from mp_api.client import MPRester
+import secret
+
+with MPRester(api_key=secret.API_KEY) as mpr:
+
+ # for a single material
+ # thermo_doc = mpr.thermo.get_data_by_id('mp-1103503') # DOES NOT WORK (WHY?)
+
+ # for many materials, it's much faster to use
+ # the `search` method, where additional material_ids can
+ # be added to this list
+ thermo_docs = mpr.thermo.search(material_ids=['mp-1103503'])
+
+ print(thermo_docs)
diff --git a/mlbands/ML.py b/mlbands/ML.py
new file mode 100644
index 00000000..a1633443
--- /dev/null
+++ b/mlbands/ML.py
@@ -0,0 +1,147 @@
+# Load in relevant libraries, and alias where appropriate
+import torch
+import torch.nn as nn
+import torchvision
+import torchvision.transforms as transforms
+
+from torch.utils.data import Dataset, DataLoader
+class Data(Dataset):
+ def __init__(self,X_train,Y_train):
+ self.X=torch.from_numpy(X_train).float()
+ self.Y=torch.from_numpy(Y_train).float()
+ self.len=self.X.shape[0]
+ def __getitem__(self,index):
+ return self.X[index], self.Y[index]
+ def __len__(self):
+ return self.len
+
+from mlbands.neuralnets import LeNet3D, LeNet5
+
+
+def reshapeX(array,channels=1):
+ return array.reshape((array.shape[0],1,*array.shape[1:]))
+
+def reshapeY(array):
+ if len(array.shape)==1:
+ return array.reshape(-1,1)
+ else:
+ return array
+
+def reshapeXY(data,channels=1):
+
+ X,Y = data
+ # return [reshapeX(X,channels=1),Y]
+ return [reshapeX(X,channels=1),reshapeY(Y)]
+
+
+# Device will determine whether to run the training on GPU or CPU.
+device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+
+
+class Machine:
+ def __init__(self, batch_size=1, num_classes=1, learning_rate=0.001, num_epochs=10 ):
+ '''Machine [ learning ] class for bulk calculations
+
+ Parameters
+ ----------
+ batch_size : int
+ batch size
+ num_classes : int
+ number of output ("Y") classes
+ learning_rate : float
+ learning rate for optimizer
+ num_epochs : int
+ number of training epochs
+ neuralnet: < neuralnets.neural_network Class>
+ neural network model (default: LeNet3D)
+ cost :
+ cost / loss function for training default: MSELoss
+ input_channels : int
+ number of input channels to neural network for (3-D structure, band_gap) (X,Y) combination, it is =1
+ '''
+ self.batch_size = batch_size
+ self.num_classes = num_classes
+ self.learning_rate = learning_rate
+ self.num_epochs = num_epochs
+
+ self.neuralnet = LeNet3D
+ self.cost = nn.MSELoss() # the loss function
+ # self.cost = nn.CrossEntropyLoss()
+ self.input_channels = 1
+
+
+ def learn(self, trainset, testset):
+ '''neural network training and testing (validation)
+
+ Parameters
+ ----------
+ trainset : < Group.X, Group.y >
+ training set of x and y values
+ testset : < Group.X, Group.y >
+ testing set of x and y values
+ '''
+ # Train the model
+ trainset = reshapeXY(trainset,channels=self.input_channels)
+ train_dataset=Data(*trainset)
+
+ train_loader = torch.utils.data.DataLoader(dataset = train_dataset,
+ batch_size = self.batch_size,
+ shuffle = True)
+
+ model = self.neuralnet(self.num_classes).to(device)
+
+
+ #Setting the optimizer with the model parameters and learning rate
+ optimizer = torch.optim.Adam(model.parameters(), lr=self.learning_rate)
+
+ #this is defined to print how many steps are remaining when training
+ total_step = len(train_loader)
+
+
+ # Training the model
+ for epoch in range(self.num_epochs):
+ for i, (images, labels) in enumerate(train_loader):
+ images = images.to(device)
+ labels = labels.to(device)
+
+ #Forward pass
+ outputs = model(images)
+ loss = self.cost(outputs, labels)
+
+ # Backward and optimize
+ optimizer.zero_grad()
+ loss.backward()
+ optimizer.step()
+
+ if (i+1) % 400 == 0:
+ print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
+ .format(epoch+1, self.num_epochs, i+1, total_step, loss.item()))
+
+
+ # Test the model
+ # In test phase, we don't need to compute gradients (for memory efficiency)
+
+ testset = reshapeXY(testset,channels=self.input_channels)
+
+ test_dataset=Data(*testset)
+
+ test_loader = torch.utils.data.DataLoader(dataset = test_dataset,
+ batch_size = self.batch_size,
+ shuffle = True)
+
+
+ with torch.no_grad():
+ correct = 0
+ total = 0
+ for images, labels in test_loader:
+ images = images.to(device)
+ labels = labels.to(device)
+ outputs = model(images)
+ _, predicted = torch.max(outputs.data, 1)
+ total += labels.size(0)
+ correct += (predicted == labels).sum().item()
+
+ print('predicted: {} ground-truth: {}'.format(predicted,labels ))
+
+ print('Accuracy of the network on the test data: {} %'.format(100 * correct / total))
+
diff --git a/mlbands/__init__.py b/mlbands/__init__.py
new file mode 100644
index 00000000..e7d486ae
--- /dev/null
+++ b/mlbands/__init__.py
@@ -0,0 +1,4 @@
+# from mlbands.secret import * # remove (import error )
+from mlbands.main import *
+from mlbands.misc import *
+from mlbands.ML import *
diff --git a/mlbands/main.py b/mlbands/main.py
new file mode 100644
index 00000000..68311aa7
--- /dev/null
+++ b/mlbands/main.py
@@ -0,0 +1,350 @@
+from mp_api.client import MPRester
+from pymatgen.analysis.diffraction.xrd import XRDCalculator
+from pymatgen.symmetry.analyzer import SpacegroupAnalyzer
+
+# from mendeleev import element
+# elements = {}
+# for i in range(1,119):
+# elements[element(i).symbol] = i
+elements={'H': 1, 'He': 2, 'Li': 3, 'Be': 4, 'B': 5, 'C': 6, 'N': 7, 'O': 8, 'F': 9, 'Ne': 10, 'Na': 11, 'Mg': 12, 'Al': 13, 'Si': 14, 'P': 15, 'S': 16, 'Cl': 17, 'Ar': 18, 'K': 19, 'Ca': 20, 'Sc': 21, 'Ti': 22, 'V': 23, 'Cr': 24, 'Mn': 25, 'Fe': 26, 'Co': 27, 'Ni': 28, 'Cu': 29, 'Zn': 30, 'Ga': 31, 'Ge': 32, 'As': 33, 'Se': 34, 'Br': 35, 'Kr': 36, 'Rb': 37, 'Sr': 38, 'Y': 39, 'Zr': 40, 'Nb': 41, 'Mo': 42, 'Tc': 43, 'Ru': 44, 'Rh': 45, 'Pd': 46, 'Ag': 47, 'Cd': 48, 'In': 49, 'Sn': 50, 'Sb': 51, 'Te': 52, 'I': 53, 'Xe': 54, 'Cs': 55, 'Ba': 56, 'La': 57, 'Ce': 58, 'Pr': 59, 'Nd': 60, 'Pm': 61, 'Sm': 62, 'Eu': 63, 'Gd': 64, 'Tb': 65, 'Dy': 66, 'Ho': 67, 'Er': 68, 'Tm': 69, 'Yb': 70, 'Lu': 71, 'Hf': 72, 'Ta': 73, 'W': 74, 'Re': 75, 'Os': 76, 'Ir': 77, 'Pt': 78, 'Au': 79, 'Hg': 80, 'Tl': 81, 'Pb': 82, 'Bi': 83, 'Po': 84, 'At': 85, 'Rn': 86, 'Fr': 87, 'Ra': 88, 'Ac': 89, 'Th': 90, 'Pa': 91, 'U': 92, 'Np': 93, 'Pu': 94, 'Am': 95, 'Cm': 96, 'Bk': 97, 'Cf': 98, 'Es': 99, 'Fm': 100, 'Md': 101, 'No': 102, 'Lr': 103, 'Rf': 104, 'Db': 105, 'Sg': 106, 'Bh': 107, 'Hs': 108, 'Mt': 109, 'Ds': 110, 'Rg': 111, 'Cn': 112, 'Nh': 113, 'Fl': 114, 'Mc': 115, 'Lv': 116, 'Ts': 117, 'Og': 118}
+
+from mlbands.misc import *
+
+import numpy as np
+import matplotlib.pyplot as plt
+
+class Material:
+ def __init__( self, api_key, material_ID = 'mp-1103503', box_array = None):
+ '''Material class. To store and process material data
+
+ Parameters
+ ----------
+ API_KEY : str
+ secret API KEY used to run MPRester data requests
+ material_ID : int
+ ID of selected material (without "mp-" prefix)
+ box_array : (float, float, float)
+ 3-D Tensor representing material chemical env.
+ '''
+ self.API_KEY = api_key
+ self.material_ID = material_ID
+ self.box_array = box_array # material already transformed to box data form (optional)
+
+ def bands(self,nonzero_gap=False):
+ '''obtain band gap information for requested Material
+
+ Parameters
+ ----------
+ nonzero_gap: bool
+ if True, only returns nonzero band gaps
+ '''
+ with MPRester(api_key=self.API_KEY) as mpr:
+ #adapted from https://matsci.org/t/obtain-large-numbers-of-band-structures/3780
+ bandstructure = None
+ try:
+ bandstructure = mpr.get_bandstructure_by_material_id(self.material_ID,line_mode=False)
+ except:
+ pass
+ if bandstructure:
+ band_gap = bandstructure.get_band_gap()
+ print('Band Gap: {} eV\nDirect Gap: {}\nMetallic: {}'.\
+ format(band_gap['energy'],\
+ 'Yes' if band_gap['direct'] else 'No',\
+ 'No' if band_gap['transition'] else 'Yes'))
+
+ if nonzero_gap:
+ if band_gap['energy']: return band_gap
+ else: return 0
+ else: return band_gap
+ else:
+ return 0
+
+ def load_structure(self, conventional=True):
+ '''helper function to load structural information of Material
+
+ Parameters
+ ----------
+ conventional: bool
+ if True, returns conventional standard structure else returns primitive
+ '''
+ with MPRester(self.API_KEY) as mpr:
+
+ # first retrieve the relevant structure
+ structure = mpr.get_structure_by_material_id(self.material_ID)
+
+ # important to use the conventional structure to ensure
+ # that peaks are labelled with the conventional Miller indices
+ sga = SpacegroupAnalyzer(structure)
+ conventional_structure = sga.get_conventional_standard_structure()
+
+ if conventional:
+ structure = conventional_structure
+
+ return structure
+
+
+ def structural(self):
+ '''prints structural information
+ '''
+ structure = Material(self.API_KEY, self.material_ID).load_structure()
+
+ print(structure.lattice)
+ print(structure.sites) #https://pymatgen.org/pymatgen.core.sites.html?highlight=periodicsite#pymatgen.core.sites.PeriodicSite
+
+ Nsites = len(structure.sites)
+ for i in range(Nsites):
+ print('\n\n')
+ # print(structure.sites[i])
+ print(structure.sites[i].species)
+ print(structure.sites[i].coords)
+ print(structure.sites[i].frac_coords)
+
+
+ def to_xyz(self, fractional=False):
+ '''processes the material structure as an array with an xyz coordinate format
+ i.e. [atom_numbers, x_coord, y_coord, z_coord]
+
+ Parameters
+ ----------
+ fractional: bool
+ if False, returns xyz coordinates else returns fractional (a,b,c) coordinates
+ '''
+ structure = Material(self.API_KEY, self.material_ID).load_structure(conventional=True)
+
+ Nsites = len(structure.sites)
+
+ xyz_array = np.zeros((Nsites,4))
+
+ if not fractional:
+ for i in range(Nsites):
+ # atom_num = elements(str(structure.sites[i].specie)).atomic_number # specie is not a typo
+ atom_num = elements[str(structure.sites[i].specie)] # specie is not a typo
+
+ xyz_array[i] = [atom_num,*structure.sites[i].coords]
+ else:
+ for i in range(Nsites):
+ # atom_num = elements(str(structure.sites[i].specie)).atomic_number
+ atom_num = elements[str(structure.sites[i].specie)]
+
+ xyz_array[i] = [atom_num,*structure.sites[i].frac_coords]
+
+ return xyz_array
+
+
+ def to_box(self, fractional=False):
+ '''processes the material structure as a sparse, 3-D Tensor "Box" with atom_numbers as the
+ non-zero entries
+ i.e. box = Tensor((z_coord, y_coord, x_coord))
+
+ Parameters
+ ----------
+ fractional: bool
+ if False, returns tensor space from xyz coordinates else from fractional (a,b,c) coordinates
+ '''
+ xyz_array = Material(self.API_KEY, self.material_ID).to_xyz(fractional)
+
+ coords = xyz_array[:,1:]
+ MAX = np.ceil(np.max(coords)).astype('int')
+ MIN = np.floor(np.min(coords)).astype('int')
+
+ xyz_array[:,1:] -= MIN
+
+ L = (MAX-MIN+1)
+
+ box = np.zeros((L,L,L))
+ for i in xyz_array:
+ print(i)
+
+ atom,x,y,z = i.astype('int')
+ box[z,y,x] = atom
+
+ return box
+
+ def visual(self, spacing = 1, fractional=False):
+ '''simple visualization tool for Material (plot)
+
+ Parameters
+ ----------
+ spacing: float
+ increases spacing by multiplying coordinate distance
+ fractional: bool
+ if False, returns tensor space from xyz coordinates else from fractional (a,b,c) coordinates
+ '''
+ ax = plt.axes(projection='3d')
+ colors = np.linspace(2**20,2**24,118,dtype='int') #divide color range into 118 colors (for the 118 chemical elements)
+
+
+ if self.box_array is not None:
+ #presence of box_array supplants material_ID
+ for i in np.argwhere(self.box_array):
+ x,y,z = i
+ atom = int(self.box_array[tuple(i)])
+ ax.scatter3D(x,y,z, s=100, c="#"+hex(colors[atom])[2:])
+
+ else:
+ xyz_array = Material(self.API_KEY, self.material_ID).to_xyz(fractional)
+ xyz_array[:,1:]*=spacing
+
+ for i in xyz_array:
+ atom,*xyz = i.astype('int')
+ ax.scatter3D(*xyz, s=100, c="#"+hex(colors[atom])[2:])
+
+
+ set_axes_equal(ax)
+
+ plt.axis('off')
+ plt.show()
+
+
+ def XRD(self):
+ '''XRD pattern data for Material
+ '''
+ structure = Material(self.API_KEY, self.material_ID).load_structure(self.API_KEY)
+
+ # this example shows how to obtain an XRD diffraction pattern
+ # these patterns are calculated on-the-fly from the structure
+ calculator = XRDCalculator(wavelength='CuKa')
+ pattern = calculator.get_pattern(structure)
+
+ print('\npattern:\n',pattern)
+
+
+ def thermo(self):
+ '''thermodynamic data for Material
+ '''
+ with MPRester(api_key=self.API_KEY) as mpr:
+
+ # for a single material
+ # thermo_docs = mpr.thermo.get_data_by_id(self.material_ID) # DOES NOT WORK msg(Item with thermo_id = mp-1103503 not found)
+
+ # for many materials, it's much faster to use
+ # the `search` method, where additional material_ids can
+ # be added to this list
+ thermo_docs = mpr.thermo.search(material_ids=[self.material_ID])
+
+ # print(thermo_docs[0].energy_per_atom)
+ return thermo_docs
+
+ def magnetism(self):
+ '''magnetic properties data for Material
+ '''
+ with MPRester(api_key=self.API_KEY) as mpr:
+ magnetism_doc = mpr.magnetism.get_data_by_id('mp-1103503')
+
+ # print(magnetism_doc.total_magnetization)
+ return magnetism_doc
+
+class Group:
+ def __init__(self,api_key):
+ '''Group class for bulk calculations
+
+ Parameters
+ ----------
+ API_KEY : str
+ secret API KEY used to run MPRester data requests
+ materials : int
+ IDs of selected material (with "mp-" prefix)
+ X : [varies] (float,float,float); ((float,float,float), *float); (*float)
+ quantitative predictors ("X-value")
+ Y : float
+ band gap (eV) quantitative response ("Y-value","label")
+ '''
+ self.API_KEY = api_key
+ self.materials = [] # material IDs (materials found in ID_list; see data_make inputs)
+ self.X = [] # quantitative predictors ("X-value")
+ self.Y = [] # quantitative response ("Y-value","label")
+
+ self.box_lengths = [] # length scale of boxes (3-D Tensors of material chemical env.)
+ self.max_length = 0
+
+ def transfer(self, loaded_data):
+ '''transfer constructor variable information to Group class from loaded data
+
+ Parameters
+ ----------
+ loaded data : <"Group" class object>
+ file containing processed Materials in a Group container
+ '''
+ self.X = loaded_data.X
+ self.Y = loaded_data.Y
+ self.materials = loaded_data.materials
+
+ def data_make(self, ID_list = range(1,10), nonzero_gap=False ):
+ '''generate Group data for selected ID_list numbers [ for materials which exist with such IDs ]
+
+ Parameters
+ ----------
+ ID_list : list[int]
+ list of material_ID numbers (i.e. without "mp-" prefix)
+ nonzero_gap: bool
+ if True, only returns nonzero band gaps
+ '''
+ for i in ID_list:
+ material = Material(self.API_KEY, 'mp-'+str(i))
+ BG = material.bands(nonzero_gap)
+ if BG: # if material with material_ID exists
+ self.materials.append('mp-'+str(i))
+
+ # quantitative response ("Y-value","label")
+ self.Y.append(BG['energy']) # append band gap energy ( eV )
+
+ box = material.to_box()
+ self.box_lengths.append(box.shape[0])
+ # quantitative predictors ("X-value")
+ self.X.append(box) # append 3-D Tensor representing material chemical env.
+ # for extra_x in features:
+ # self.X.append(extra_x)
+
+ self.Y = np.array(self.Y)
+
+ def data_expand(self,boxes=True,*property_funcs):
+ '''expand "X-values" data to other chemical characteristics
+
+ e.g. data_expand(True, thermo, magnetic) appends "thermo" and "magnetic" characteristics to X in addition to 3-D Tensors
+ e.g. data_expand(False, thermo, magnetic) creates a new X-value object and appends "thermo" and "magnetic" characteristics alone
+
+ Parameters
+ ----------
+ boxes : bool
+ removes 3-D tensors to X variable if False,
+ *property_funcs: , ...,
+ operates functions on Materials which extract additional properties and appends them to X
+ '''
+ boxes = self.X
+ self.X = []
+ # load a property for all materials
+ for i in self.materials:
+ material = Material(self.API_KEY, 'mp-'+str(i))
+
+ k=0
+ material_props = []
+ material_props.append(boxes[k]) if boxes else None
+ for func in property_funcs:
+ material_props.append(material.func)
+
+ self.X.append(material_props)
+ k+=1
+
+
+ def resize_boxes(self, L=32):
+ '''resize 3-D tensor boxes to fit neural network architecture (32x32x32)
+
+ Parameters
+ ----------
+ L: int
+ length-scale of boxes (3-D Tensors representing material chemical env.)
+ '''
+ max_length = np.max(self.box_lengths)
+
+ if L >= max_length:
+
+
+ self.X = np.array([ np.pad(self.X[i],\
+ ( (0,L-self.box_lengths[i]),(0,L-self.box_lengths[i]),(0,L-self.box_lengths[i]) )
+ ) for i in range(len(self.X)) ])
+
+ # print(self.X.shape)
+
+
+
+
diff --git a/mlbands/misc.py b/mlbands/misc.py
new file mode 100644
index 00000000..ec573cb8
--- /dev/null
+++ b/mlbands/misc.py
@@ -0,0 +1,35 @@
+import numpy as np
+
+def set_axes_radius(ax, origin, radius):
+ '''set_axes_radius and set_axes_equal * * * Credit:
+ Mateen Ulhaq (answered Jun 3 '18 at 7:55)
+ https://stackoverflow.com/questions/13685386/matplotlib-equal-unit-length-with-equal-aspect-ratio-z-axis-is-not-equal-to'''
+ ax.set_xlim3d([origin[0] - radius, origin[0] + radius])
+ ax.set_ylim3d([origin[1] - radius, origin[1] + radius])
+ ax.set_zlim3d([origin[2] - radius, origin[2] + radius])
+def set_axes_equal(ax):
+ '''Make axes of 3D plot have equal scale so that spheres appear as spheres,
+ cubes as cubes, etc.. This is one possible solution to Matplotlib's
+ ax.set_aspect('equal') and ax.axis('equal') not working for 3D.
+ Input
+ ax: a matplotlib axis, e.g., as output from plt.gca().
+ '''
+ limits = np.array([
+ ax.get_xlim3d(),
+ ax.get_ylim3d(),
+ ax.get_zlim3d(),
+ ])
+
+ origin = np.mean(limits, axis=1)
+ radius = 0.5 * np.max(np.abs(limits[:, 1] - limits[:, 0]))
+ set_axes_radius(ax, origin, radius)
+
+
+# adapted from https://stackoverflow.com/a/47381855/14460178
+import pickle
+
+def save(data, filename = 'file.mat3r'):
+ with open(filename, 'wb') as handle: pickle.dump(data, handle)
+
+def load(filename = 'file.mat3r'):
+ with open(filename, 'rb') as handle: return pickle.load(handle)
diff --git a/mlbands/neuralnets/__init__.py b/mlbands/neuralnets/__init__.py
new file mode 100644
index 00000000..8a3063ec
--- /dev/null
+++ b/mlbands/neuralnets/__init__.py
@@ -0,0 +1,2 @@
+from .lenet5 import LeNet5
+from .lenet3d import LeNet3D
diff --git a/mlbands/neuralnets/lenet3d.py b/mlbands/neuralnets/lenet3d.py
new file mode 100644
index 00000000..2f549f58
--- /dev/null
+++ b/mlbands/neuralnets/lenet3d.py
@@ -0,0 +1,47 @@
+# https://github.com/andrewrgarcia/3D-LeNet-with-PyTorch
+from torch.autograd import Variable
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+L=32 # length scale of cubes (default: 32 x 32 x 32)
+
+class LeNet3D(nn.Module):
+ def __init__(self, num_classes):
+ super(LeNet3D, self).__init__()
+
+ self.conv1 = nn.Conv3d(1, 6, kernel_size=(5, 5, 5))
+ self.pool = nn.MaxPool3d(2, 2)
+ self.conv2 = nn.Conv3d(6, (L//2), kernel_size=(5, 5, 5))
+ self.fc1 = nn.Linear((L//2) * 5 * 5 * 5, 120)
+ self.fc2 = nn.Linear(120, 84)
+ self.fc3 = nn.Linear(84, num_classes)
+
+ def forward(self, x):
+ x = self.pool(F.relu(self.conv1(x)))
+ # print(x.size())
+ x = self.pool(F.relu(self.conv2(x)))
+ # print(x.size())
+ x = x.view(-1, (L//2) * 5 * 5 * 5)
+ # print(x.size())
+ x = F.relu(self.fc1(x))
+ x = F.relu(self.fc2(x))
+ x = self.fc3(x)
+ return x
+
+
+# # input: (N = batch_size, C = 1, L = 32, L = 32, L = 32)
+# # output: (N, num_classes)
+
+# # Test the model:
+# num_classes = 1
+
+# model = LeNet3D(num_classes)
+
+# x = Variable(torch.randn(10, 1, L, L, L)) # (N_samples,C_channels,D=L,H=L,W=L)
+# print(x)
+# y = model(x)
+# print(y)
+
+
+
diff --git a/mlbands/neuralnets/lenet5.py b/mlbands/neuralnets/lenet5.py
new file mode 100644
index 00000000..3acaa5aa
--- /dev/null
+++ b/mlbands/neuralnets/lenet5.py
@@ -0,0 +1,33 @@
+# LeNet5 from Paperspace blog https://blog.paperspace.com/writing-lenet5-from-scratch-in-python/
+import torch.nn as nn
+
+#Defining the convolutional neural network
+class LeNet5(nn.Module):
+ def __init__(self, num_classes):
+ super(LeNet5, self).__init__()
+ self.layer1 = nn.Sequential(
+ nn.Conv2d(1, 6, kernel_size=5, stride=1, padding=0),
+ nn.BatchNorm2d(6),
+ nn.ReLU(),
+ nn.MaxPool2d(kernel_size = 2, stride = 2))
+ self.layer2 = nn.Sequential(
+ nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0),
+ nn.BatchNorm2d(16),
+ nn.ReLU(),
+ nn.MaxPool2d(kernel_size = 2, stride = 2))
+ self.fc = nn.Linear(400, 120)
+ self.relu = nn.ReLU()
+ self.fc1 = nn.Linear(120, 84)
+ self.relu1 = nn.ReLU()
+ self.fc2 = nn.Linear(84, num_classes)
+
+ def forward(self, x):
+ out = self.layer1(x)
+ out = self.layer2(out)
+ out = out.reshape(out.size(0), -1)
+ out = self.fc(out)
+ out = self.relu(out)
+ out = self.fc1(out)
+ out = self.relu1(out)
+ out = self.fc2(out)
+ return out
\ No newline at end of file
diff --git a/poetry.lock b/poetry.lock
new file mode 100644
index 00000000..8e2f0f82
--- /dev/null
+++ b/poetry.lock
@@ -0,0 +1,1397 @@
+# This file is automatically @generated by Poetry and should not be changed by hand.
+
+[[package]]
+name = "certifi"
+version = "2022.12.7"
+description = "Python package for providing Mozilla's CA Bundle."
+category = "main"
+optional = false
+python-versions = ">=3.6"
+files = [
+ {file = "certifi-2022.12.7-py3-none-any.whl", hash = "sha256:4ad3232f5e926d6718ec31cfc1fcadfde020920e278684144551c91769c7bc18"},
+ {file = "certifi-2022.12.7.tar.gz", hash = "sha256:35824b4c3a97115964b408844d64aa14db1cc518f6562e8d7261699d1350a9e3"},
+]
+
+[[package]]
+name = "charset-normalizer"
+version = "2.1.1"
+description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet."
+category = "main"
+optional = false
+python-versions = ">=3.6.0"
+files = [
+ {file = "charset-normalizer-2.1.1.tar.gz", hash = "sha256:5a3d016c7c547f69d6f81fb0db9449ce888b418b5b9952cc5e6e66843e9dd845"},
+ {file = "charset_normalizer-2.1.1-py3-none-any.whl", hash = "sha256:83e9a75d1911279afd89352c68b45348559d1fc0506b054b346651b5e7fee29f"},
+]
+
+[package.extras]
+unicode-backport = ["unicodedata2"]
+
+[[package]]
+name = "colorama"
+version = "0.4.6"
+description = "Cross-platform colored terminal text."
+category = "main"
+optional = false
+python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7"
+files = [
+ {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"},
+ {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"},
+]
+
+[[package]]
+name = "contourpy"
+version = "1.0.6"
+description = "Python library for calculating contours of 2D quadrilateral grids"
+category = "main"
+optional = false
+python-versions = ">=3.7"
+files = [
+ {file = "contourpy-1.0.6-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:613c665529899b5d9fade7e5d1760111a0b011231277a0d36c49f0d3d6914bd6"},
+ {file = "contourpy-1.0.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:78ced51807ccb2f45d4ea73aca339756d75d021069604c2fccd05390dc3c28eb"},
+ {file = "contourpy-1.0.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b3b1bd7577c530eaf9d2bc52d1a93fef50ac516a8b1062c3d1b9bcec9ebe329b"},
+ {file = "contourpy-1.0.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8834c14b8c3dd849005e06703469db9bf96ba2d66a3f88ecc539c9a8982e0ee"},
+ {file = "contourpy-1.0.6-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f4052a8a4926d4468416fc7d4b2a7b2a3e35f25b39f4061a7e2a3a2748c4fc48"},
+ {file = "contourpy-1.0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1c0e1308307a75e07d1f1b5f0f56b5af84538a5e9027109a7bcf6cb47c434e72"},
+ {file = "contourpy-1.0.6-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:9fc4e7973ed0e1fe689435842a6e6b330eb7ccc696080dda9a97b1a1b78e41db"},
+ {file = "contourpy-1.0.6-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:08e8d09d96219ace6cb596506fb9b64ea5f270b2fb9121158b976d88871fcfd1"},
+ {file = "contourpy-1.0.6-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:f33da6b5d19ad1bb5e7ad38bb8ba5c426d2178928bc2b2c44e8823ea0ecb6ff3"},
+ {file = "contourpy-1.0.6-cp310-cp310-win32.whl", hash = "sha256:12a7dc8439544ed05c6553bf026d5e8fa7fad48d63958a95d61698df0e00092b"},
+ {file = "contourpy-1.0.6-cp310-cp310-win_amd64.whl", hash = "sha256:eadad75bf91897f922e0fb3dca1b322a58b1726a953f98c2e5f0606bd8408621"},
+ {file = "contourpy-1.0.6-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:913bac9d064cff033cf3719e855d4f1db9f1c179e0ecf3ba9fdef21c21c6a16a"},
+ {file = "contourpy-1.0.6-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:46deb310a276cc5c1fd27958e358cce68b1e8a515fa5a574c670a504c3a3fe30"},
+ {file = "contourpy-1.0.6-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b64f747e92af7da3b85631a55d68c45a2d728b4036b03cdaba4bd94bcc85bd6f"},
+ {file = "contourpy-1.0.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50627bf76abb6ba291ad08db583161939c2c5fab38c38181b7833423ab9c7de3"},
+ {file = "contourpy-1.0.6-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:358f6364e4873f4d73360b35da30066f40387dd3c427a3e5432c6b28dd24a8fa"},
+ {file = "contourpy-1.0.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c78bfbc1a7bff053baf7e508449d2765964d67735c909b583204e3240a2aca45"},
+ {file = "contourpy-1.0.6-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e43255a83835a129ef98f75d13d643844d8c646b258bebd11e4a0975203e018f"},
+ {file = "contourpy-1.0.6-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:375d81366afd547b8558c4720337218345148bc2fcffa3a9870cab82b29667f2"},
+ {file = "contourpy-1.0.6-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:b98c820608e2dca6442e786817f646d11057c09a23b68d2b3737e6dcb6e4a49b"},
+ {file = "contourpy-1.0.6-cp311-cp311-win32.whl", hash = "sha256:0e4854cc02006ad6684ce092bdadab6f0912d131f91c2450ce6dbdea78ee3c0b"},
+ {file = "contourpy-1.0.6-cp311-cp311-win_amd64.whl", hash = "sha256:d2eff2af97ea0b61381828b1ad6cd249bbd41d280e53aea5cccd7b2b31b8225c"},
+ {file = "contourpy-1.0.6-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:5b117d29433fc8393b18a696d794961464e37afb34a6eeb8b2c37b5f4128a83e"},
+ {file = "contourpy-1.0.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:341330ed19074f956cb20877ad8d2ae50e458884bfa6a6df3ae28487cc76c768"},
+ {file = "contourpy-1.0.6-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:371f6570a81dfdddbb837ba432293a63b4babb942a9eb7aaa699997adfb53278"},
+ {file = "contourpy-1.0.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9447c45df407d3ecb717d837af3b70cfef432138530712263730783b3d016512"},
+ {file = "contourpy-1.0.6-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:730c27978a0003b47b359935478b7d63fd8386dbb2dcd36c1e8de88cbfc1e9de"},
+ {file = "contourpy-1.0.6-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:da1ef35fd79be2926ba80fbb36327463e3656c02526e9b5b4c2b366588b74d9a"},
+ {file = "contourpy-1.0.6-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:cd2bc0c8f2e8de7dd89a7f1c10b8844e291bca17d359373203ef2e6100819edd"},
+ {file = "contourpy-1.0.6-cp37-cp37m-win32.whl", hash = "sha256:3a1917d3941dd58732c449c810fa7ce46cc305ce9325a11261d740118b85e6f3"},
+ {file = "contourpy-1.0.6-cp37-cp37m-win_amd64.whl", hash = "sha256:06ca79e1efbbe2df795822df2fa173d1a2b38b6e0f047a0ec7903fbca1d1847e"},
+ {file = "contourpy-1.0.6-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:e626cefff8491bce356221c22af5a3ea528b0b41fbabc719c00ae233819ea0bf"},
+ {file = "contourpy-1.0.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:dbe6fe7a1166b1ddd7b6d887ea6fa8389d3f28b5ed3f73a8f40ece1fc5a3d340"},
+ {file = "contourpy-1.0.6-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e13b31d1b4b68db60b3b29f8e337908f328c7f05b9add4b1b5c74e0691180109"},
+ {file = "contourpy-1.0.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a79d239fc22c3b8d9d3de492aa0c245533f4f4c7608e5749af866949c0f1b1b9"},
+ {file = "contourpy-1.0.6-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9e8e686a6db92a46111a1ee0ee6f7fbfae4048f0019de207149f43ac1812cf95"},
+ {file = "contourpy-1.0.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:acd2bd02f1a7adff3a1f33e431eb96ab6d7987b039d2946a9b39fe6fb16a1036"},
+ {file = "contourpy-1.0.6-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:03d1b9c6b44a9e30d554654c72be89af94fab7510b4b9f62356c64c81cec8b7d"},
+ {file = "contourpy-1.0.6-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:b48d94386f1994db7c70c76b5808c12e23ed7a4ee13693c2fc5ab109d60243c0"},
+ {file = "contourpy-1.0.6-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:208bc904889c910d95aafcf7be9e677726df9ef71e216780170dbb7e37d118fa"},
+ {file = "contourpy-1.0.6-cp38-cp38-win32.whl", hash = "sha256:444fb776f58f4906d8d354eb6f6ce59d0a60f7b6a720da6c1ccb839db7c80eb9"},
+ {file = "contourpy-1.0.6-cp38-cp38-win_amd64.whl", hash = "sha256:9bc407a6af672da20da74823443707e38ece8b93a04009dca25856c2d9adadb1"},
+ {file = "contourpy-1.0.6-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:aa4674cf3fa2bd9c322982644967f01eed0c91bb890f624e0e0daf7a5c3383e9"},
+ {file = "contourpy-1.0.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6f56515e7c6fae4529b731f6c117752247bef9cdad2b12fc5ddf8ca6a50965a5"},
+ {file = "contourpy-1.0.6-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:344cb3badf6fc7316ad51835f56ac387bdf86c8e1b670904f18f437d70da4183"},
+ {file = "contourpy-1.0.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0b1e66346acfb17694d46175a0cea7d9036f12ed0c31dfe86f0f405eedde2bdd"},
+ {file = "contourpy-1.0.6-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8468b40528fa1e15181cccec4198623b55dcd58306f8815a793803f51f6c474a"},
+ {file = "contourpy-1.0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1dedf4c64185a216c35eb488e6f433297c660321275734401760dafaeb0ad5c2"},
+ {file = "contourpy-1.0.6-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:494efed2c761f0f37262815f9e3c4bb9917c5c69806abdee1d1cb6611a7174a0"},
+ {file = "contourpy-1.0.6-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:75a2e638042118118ab39d337da4c7908c1af74a8464cad59f19fbc5bbafec9b"},
+ {file = "contourpy-1.0.6-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a628bba09ba72e472bf7b31018b6281fd4cc903f0888049a3724afba13b6e0b8"},
+ {file = "contourpy-1.0.6-cp39-cp39-win32.whl", hash = "sha256:e1739496c2f0108013629aa095cc32a8c6363444361960c07493818d0dea2da4"},
+ {file = "contourpy-1.0.6-cp39-cp39-win_amd64.whl", hash = "sha256:a457ee72d9032e86730f62c5eeddf402e732fdf5ca8b13b41772aa8ae13a4563"},
+ {file = "contourpy-1.0.6-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d912f0154a20a80ea449daada904a7eb6941c83281a9fab95de50529bfc3a1da"},
+ {file = "contourpy-1.0.6-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4081918147fc4c29fad328d5066cfc751da100a1098398742f9f364be63803fc"},
+ {file = "contourpy-1.0.6-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0537cc1195245bbe24f2913d1f9211b8f04eb203de9044630abd3664c6cc339c"},
+ {file = "contourpy-1.0.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dcd556c8fc37a342dd636d7eef150b1399f823a4462f8c968e11e1ebeabee769"},
+ {file = "contourpy-1.0.6-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:f6ca38dd8d988eca8f07305125dec6f54ac1c518f1aaddcc14d08c01aebb6efc"},
+ {file = "contourpy-1.0.6-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c1baa49ab9fedbf19d40d93163b7d3e735d9cd8d5efe4cce9907902a6dad391f"},
+ {file = "contourpy-1.0.6-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:211dfe2bd43bf5791d23afbe23a7952e8ac8b67591d24be3638cabb648b3a6eb"},
+ {file = "contourpy-1.0.6-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c38c6536c2d71ca2f7e418acaf5bca30a3af7f2a2fa106083c7d738337848dbe"},
+ {file = "contourpy-1.0.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1b1ee48a130da4dd0eb8055bbab34abf3f6262957832fd575e0cab4979a15a41"},
+ {file = "contourpy-1.0.6-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5641927cc5ae66155d0c80195dc35726eae060e7defc18b7ab27600f39dd1fe7"},
+ {file = "contourpy-1.0.6-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:7ee394502026d68652c2824348a40bf50f31351a668977b51437131a90d777ea"},
+ {file = "contourpy-1.0.6-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0b97454ed5b1368b66ed414c754cba15b9750ce69938fc6153679787402e4cdf"},
+ {file = "contourpy-1.0.6-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0236875c5a0784215b49d00ebbe80c5b6b5d5244b3655a36dda88105334dea17"},
+ {file = "contourpy-1.0.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:84c593aeff7a0171f639da92cb86d24954bbb61f8a1b530f74eb750a14685832"},
+ {file = "contourpy-1.0.6-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:9b0e7fe7f949fb719b206548e5cde2518ffb29936afa4303d8a1c4db43dcb675"},
+ {file = "contourpy-1.0.6.tar.gz", hash = "sha256:6e459ebb8bb5ee4c22c19cc000174f8059981971a33ce11e17dddf6aca97a142"},
+]
+
+[package.dependencies]
+numpy = ">=1.16"
+
+[package.extras]
+bokeh = ["bokeh", "selenium"]
+docs = ["docutils (<0.18)", "sphinx (<=5.2.0)", "sphinx-rtd-theme"]
+test = ["Pillow", "flake8", "isort", "matplotlib", "pytest"]
+test-minimal = ["pytest"]
+test-no-codebase = ["Pillow", "matplotlib", "pytest"]
+
+[[package]]
+name = "cycler"
+version = "0.11.0"
+description = "Composable style cycles"
+category = "main"
+optional = false
+python-versions = ">=3.6"
+files = [
+ {file = "cycler-0.11.0-py3-none-any.whl", hash = "sha256:3a27e95f763a428a739d2add979fa7494c912a32c17c4c38c4d5f082cad165a3"},
+ {file = "cycler-0.11.0.tar.gz", hash = "sha256:9c87405839a19696e837b3b818fed3f5f69f16f1eec1a1ad77e043dcea9c772f"},
+]
+
+[[package]]
+name = "emmet-core"
+version = "0.39.6"
+description = "Core Emmet Library"
+category = "main"
+optional = false
+python-versions = ">=3.8"
+files = [
+ {file = "emmet-core-0.39.6.tar.gz", hash = "sha256:155bf361fb86ed9feba891324b3263ff70c3a89a7ba6af885f32e867a297fdbe"},
+ {file = "emmet_core-0.39.6-py3-none-any.whl", hash = "sha256:1e2d7a834892f9b204e5c20b10483638f46ed004c9a2a02e672e0d147bf24b60"},
+]
+
+[package.dependencies]
+monty = ">=2021.3,<2023.0"
+pybtex = ">=0.24,<1.0"
+pydantic = ">=1.10.2"
+pymatgen = ">=2021.3,<2023.0"
+spglib = ">=2.0.1"
+typing-extensions = ">=3.7,<5.0"
+
+[package.extras]
+all = ["pymatgen-analysis-alloys (>=0.0.3)", "pymatgen-analysis-diffusion (>=2022.1.15)", "robocrys (>=0.2.7)", "seekpath (>=2.0.1)"]
+docs = ["jinja2", "livereload", "mkdocs", "mkdocs-awesome-pages-plugin", "mkdocs-markdownextradata-plugin", "mkdocs-material (<8.3)", "mkdocs-material-extensions", "mkdocs-minify-plugin", "mkdocstrings", "mkdocstrings[python]"]
+test = ["flake8", "maggma", "mypy", "mypy-extensions", "openbabel", "pre-commit", "pycodestyle", "pydocstyle", "pytest", "pytest-cov", "types-requests", "types-setuptools", "wincertstore"]
+
+[[package]]
+name = "fonttools"
+version = "4.38.0"
+description = "Tools to manipulate font files"
+category = "main"
+optional = false
+python-versions = ">=3.7"
+files = [
+ {file = "fonttools-4.38.0-py3-none-any.whl", hash = "sha256:820466f43c8be8c3009aef8b87e785014133508f0de64ec469e4efb643ae54fb"},
+ {file = "fonttools-4.38.0.zip", hash = "sha256:2bb244009f9bf3fa100fc3ead6aeb99febe5985fa20afbfbaa2f8946c2fbdaf1"},
+]
+
+[package.extras]
+all = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "fs (>=2.2.0,<3)", "lxml (>=4.0,<5)", "lz4 (>=1.7.4.2)", "matplotlib", "munkres", "scipy", "skia-pathops (>=0.5.0)", "sympy", "uharfbuzz (>=0.23.0)", "unicodedata2 (>=14.0.0)", "xattr", "zopfli (>=0.1.4)"]
+graphite = ["lz4 (>=1.7.4.2)"]
+interpolatable = ["munkres", "scipy"]
+lxml = ["lxml (>=4.0,<5)"]
+pathops = ["skia-pathops (>=0.5.0)"]
+plot = ["matplotlib"]
+repacker = ["uharfbuzz (>=0.23.0)"]
+symfont = ["sympy"]
+type1 = ["xattr"]
+ufo = ["fs (>=2.2.0,<3)"]
+unicode = ["unicodedata2 (>=14.0.0)"]
+woff = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "zopfli (>=0.1.4)"]
+
+[[package]]
+name = "future"
+version = "0.18.2"
+description = "Clean single-source support for Python 3 and 2"
+category = "main"
+optional = false
+python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*"
+files = [
+ {file = "future-0.18.2.tar.gz", hash = "sha256:b1bead90b70cf6ec3f0710ae53a525360fa360d306a86583adc6bf83a4db537d"},
+]
+
+[[package]]
+name = "idna"
+version = "3.4"
+description = "Internationalized Domain Names in Applications (IDNA)"
+category = "main"
+optional = false
+python-versions = ">=3.5"
+files = [
+ {file = "idna-3.4-py3-none-any.whl", hash = "sha256:90b77e79eaa3eba6de819a0c442c0b4ceefc341a7a2ab77d7562bf49f425c5c2"},
+ {file = "idna-3.4.tar.gz", hash = "sha256:814f528e8dead7d329833b91c5faa87d60bf71824cd12a7530b5526063d02cb4"},
+]
+
+[[package]]
+name = "kiwisolver"
+version = "1.4.4"
+description = "A fast implementation of the Cassowary constraint solver"
+category = "main"
+optional = false
+python-versions = ">=3.7"
+files = [
+ {file = "kiwisolver-1.4.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:2f5e60fabb7343a836360c4f0919b8cd0d6dbf08ad2ca6b9cf90bf0c76a3c4f6"},
+ {file = "kiwisolver-1.4.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:10ee06759482c78bdb864f4109886dff7b8a56529bc1609d4f1112b93fe6423c"},
+ {file = "kiwisolver-1.4.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c79ebe8f3676a4c6630fd3f777f3cfecf9289666c84e775a67d1d358578dc2e3"},
+ {file = "kiwisolver-1.4.4-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:abbe9fa13da955feb8202e215c4018f4bb57469b1b78c7a4c5c7b93001699938"},
+ {file = "kiwisolver-1.4.4-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7577c1987baa3adc4b3c62c33bd1118c3ef5c8ddef36f0f2c950ae0b199e100d"},
+ {file = "kiwisolver-1.4.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f8ad8285b01b0d4695102546b342b493b3ccc6781fc28c8c6a1bb63e95d22f09"},
+ {file = "kiwisolver-1.4.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8ed58b8acf29798b036d347791141767ccf65eee7f26bde03a71c944449e53de"},
+ {file = "kiwisolver-1.4.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a68b62a02953b9841730db7797422f983935aeefceb1679f0fc85cbfbd311c32"},
+ {file = "kiwisolver-1.4.4-cp310-cp310-win32.whl", hash = "sha256:e92a513161077b53447160b9bd8f522edfbed4bd9759e4c18ab05d7ef7e49408"},
+ {file = "kiwisolver-1.4.4-cp310-cp310-win_amd64.whl", hash = "sha256:3fe20f63c9ecee44560d0e7f116b3a747a5d7203376abeea292ab3152334d004"},
+ {file = "kiwisolver-1.4.4-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:e0ea21f66820452a3f5d1655f8704a60d66ba1191359b96541eaf457710a5fc6"},
+ {file = "kiwisolver-1.4.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:bc9db8a3efb3e403e4ecc6cd9489ea2bac94244f80c78e27c31dcc00d2790ac2"},
+ {file = "kiwisolver-1.4.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d5b61785a9ce44e5a4b880272baa7cf6c8f48a5180c3e81c59553ba0cb0821ca"},
+ {file = "kiwisolver-1.4.4-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c2dbb44c3f7e6c4d3487b31037b1bdbf424d97687c1747ce4ff2895795c9bf69"},
+ {file = "kiwisolver-1.4.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6295ecd49304dcf3bfbfa45d9a081c96509e95f4b9d0eb7ee4ec0530c4a96514"},
+ {file = "kiwisolver-1.4.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4bd472dbe5e136f96a4b18f295d159d7f26fd399136f5b17b08c4e5f498cd494"},
+ {file = "kiwisolver-1.4.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:bf7d9fce9bcc4752ca4a1b80aabd38f6d19009ea5cbda0e0856983cf6d0023f5"},
+ {file = "kiwisolver-1.4.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:78d6601aed50c74e0ef02f4204da1816147a6d3fbdc8b3872d263338a9052c51"},
+ {file = "kiwisolver-1.4.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:877272cf6b4b7e94c9614f9b10140e198d2186363728ed0f701c6eee1baec1da"},
+ {file = "kiwisolver-1.4.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:db608a6757adabb32f1cfe6066e39b3706d8c3aa69bbc353a5b61edad36a5cb4"},
+ {file = "kiwisolver-1.4.4-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:5853eb494c71e267912275e5586fe281444eb5e722de4e131cddf9d442615626"},
+ {file = "kiwisolver-1.4.4-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:f0a1dbdb5ecbef0d34eb77e56fcb3e95bbd7e50835d9782a45df81cc46949750"},
+ {file = "kiwisolver-1.4.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:283dffbf061a4ec60391d51e6155e372a1f7a4f5b15d59c8505339454f8989e4"},
+ {file = "kiwisolver-1.4.4-cp311-cp311-win32.whl", hash = "sha256:d06adcfa62a4431d404c31216f0f8ac97397d799cd53800e9d3efc2fbb3cf14e"},
+ {file = "kiwisolver-1.4.4-cp311-cp311-win_amd64.whl", hash = "sha256:e7da3fec7408813a7cebc9e4ec55afed2d0fd65c4754bc376bf03498d4e92686"},
+ {file = "kiwisolver-1.4.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:62ac9cc684da4cf1778d07a89bf5f81b35834cb96ca523d3a7fb32509380cbf6"},
+ {file = "kiwisolver-1.4.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41dae968a94b1ef1897cb322b39360a0812661dba7c682aa45098eb8e193dbdf"},
+ {file = "kiwisolver-1.4.4-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:02f79693ec433cb4b5f51694e8477ae83b3205768a6fb48ffba60549080e295b"},
+ {file = "kiwisolver-1.4.4-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d0611a0a2a518464c05ddd5a3a1a0e856ccc10e67079bb17f265ad19ab3c7597"},
+ {file = "kiwisolver-1.4.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:db5283d90da4174865d520e7366801a93777201e91e79bacbac6e6927cbceede"},
+ {file = "kiwisolver-1.4.4-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1041feb4cda8708ce73bb4dcb9ce1ccf49d553bf87c3954bdfa46f0c3f77252c"},
+ {file = "kiwisolver-1.4.4-cp37-cp37m-win32.whl", hash = "sha256:a553dadda40fef6bfa1456dc4be49b113aa92c2a9a9e8711e955618cd69622e3"},
+ {file = "kiwisolver-1.4.4-cp37-cp37m-win_amd64.whl", hash = "sha256:03baab2d6b4a54ddbb43bba1a3a2d1627e82d205c5cf8f4c924dc49284b87166"},
+ {file = "kiwisolver-1.4.4-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:841293b17ad704d70c578f1f0013c890e219952169ce8a24ebc063eecf775454"},
+ {file = "kiwisolver-1.4.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f4f270de01dd3e129a72efad823da90cc4d6aafb64c410c9033aba70db9f1ff0"},
+ {file = "kiwisolver-1.4.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:f9f39e2f049db33a908319cf46624a569b36983c7c78318e9726a4cb8923b26c"},
+ {file = "kiwisolver-1.4.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c97528e64cb9ebeff9701e7938653a9951922f2a38bd847787d4a8e498cc83ae"},
+ {file = "kiwisolver-1.4.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d1573129aa0fd901076e2bfb4275a35f5b7aa60fbfb984499d661ec950320b0"},
+ {file = "kiwisolver-1.4.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ad881edc7ccb9d65b0224f4e4d05a1e85cf62d73aab798943df6d48ab0cd79a1"},
+ {file = "kiwisolver-1.4.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b428ef021242344340460fa4c9185d0b1f66fbdbfecc6c63eff4b7c29fad429d"},
+ {file = "kiwisolver-1.4.4-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:2e407cb4bd5a13984a6c2c0fe1845e4e41e96f183e5e5cd4d77a857d9693494c"},
+ {file = "kiwisolver-1.4.4-cp38-cp38-win32.whl", hash = "sha256:75facbe9606748f43428fc91a43edb46c7ff68889b91fa31f53b58894503a191"},
+ {file = "kiwisolver-1.4.4-cp38-cp38-win_amd64.whl", hash = "sha256:5bce61af018b0cb2055e0e72e7d65290d822d3feee430b7b8203d8a855e78766"},
+ {file = "kiwisolver-1.4.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:8c808594c88a025d4e322d5bb549282c93c8e1ba71b790f539567932722d7bd8"},
+ {file = "kiwisolver-1.4.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:f0a71d85ecdd570ded8ac3d1c0f480842f49a40beb423bb8014539a9f32a5897"},
+ {file = "kiwisolver-1.4.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b533558eae785e33e8c148a8d9921692a9fe5aa516efbdff8606e7d87b9d5824"},
+ {file = "kiwisolver-1.4.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:efda5fc8cc1c61e4f639b8067d118e742b812c930f708e6667a5ce0d13499e29"},
+ {file = "kiwisolver-1.4.4-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:7c43e1e1206cd421cd92e6b3280d4385d41d7166b3ed577ac20444b6995a445f"},
+ {file = "kiwisolver-1.4.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bc8d3bd6c72b2dd9decf16ce70e20abcb3274ba01b4e1c96031e0c4067d1e7cd"},
+ {file = "kiwisolver-1.4.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4ea39b0ccc4f5d803e3337dd46bcce60b702be4d86fd0b3d7531ef10fd99a1ac"},
+ {file = "kiwisolver-1.4.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:968f44fdbf6dd757d12920d63b566eeb4d5b395fd2d00d29d7ef00a00582aac9"},
+ {file = "kiwisolver-1.4.4-cp39-cp39-win32.whl", hash = "sha256:da7e547706e69e45d95e116e6939488d62174e033b763ab1496b4c29b76fabea"},
+ {file = "kiwisolver-1.4.4-cp39-cp39-win_amd64.whl", hash = "sha256:ba59c92039ec0a66103b1d5fe588fa546373587a7d68f5c96f743c3396afc04b"},
+ {file = "kiwisolver-1.4.4-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:91672bacaa030f92fc2f43b620d7b337fd9a5af28b0d6ed3f77afc43c4a64b5a"},
+ {file = "kiwisolver-1.4.4-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:787518a6789009c159453da4d6b683f468ef7a65bbde796bcea803ccf191058d"},
+ {file = "kiwisolver-1.4.4-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da152d8cdcab0e56e4f45eb08b9aea6455845ec83172092f09b0e077ece2cf7a"},
+ {file = "kiwisolver-1.4.4-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:ecb1fa0db7bf4cff9dac752abb19505a233c7f16684c5826d1f11ebd9472b871"},
+ {file = "kiwisolver-1.4.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:28bc5b299f48150b5f822ce68624e445040595a4ac3d59251703779836eceff9"},
+ {file = "kiwisolver-1.4.4-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:81e38381b782cc7e1e46c4e14cd997ee6040768101aefc8fa3c24a4cc58e98f8"},
+ {file = "kiwisolver-1.4.4-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:2a66fdfb34e05b705620dd567f5a03f239a088d5a3f321e7b6ac3239d22aa286"},
+ {file = "kiwisolver-1.4.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:872b8ca05c40d309ed13eb2e582cab0c5a05e81e987ab9c521bf05ad1d5cf5cb"},
+ {file = "kiwisolver-1.4.4-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:70e7c2e7b750585569564e2e5ca9845acfaa5da56ac46df68414f29fea97be9f"},
+ {file = "kiwisolver-1.4.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:9f85003f5dfa867e86d53fac6f7e6f30c045673fa27b603c397753bebadc3008"},
+ {file = "kiwisolver-1.4.4-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2e307eb9bd99801f82789b44bb45e9f541961831c7311521b13a6c85afc09767"},
+ {file = "kiwisolver-1.4.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b1792d939ec70abe76f5054d3f36ed5656021dcad1322d1cc996d4e54165cef9"},
+ {file = "kiwisolver-1.4.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6cb459eea32a4e2cf18ba5fcece2dbdf496384413bc1bae15583f19e567f3b2"},
+ {file = "kiwisolver-1.4.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:36dafec3d6d6088d34e2de6b85f9d8e2324eb734162fba59d2ba9ed7a2043d5b"},
+ {file = "kiwisolver-1.4.4.tar.gz", hash = "sha256:d41997519fcba4a1e46eb4a2fe31bc12f0ff957b2b81bac28db24744f333e955"},
+]
+
+[[package]]
+name = "latexcodec"
+version = "2.0.1"
+description = "A lexer and codec to work with LaTeX code in Python."
+category = "main"
+optional = false
+python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
+files = [
+ {file = "latexcodec-2.0.1-py2.py3-none-any.whl", hash = "sha256:c277a193638dc7683c4c30f6684e3db728a06efb0dc9cf346db8bd0aa6c5d271"},
+ {file = "latexcodec-2.0.1.tar.gz", hash = "sha256:2aa2551c373261cefe2ad3a8953a6d6533e68238d180eb4bb91d7964adb3fe9a"},
+]
+
+[package.dependencies]
+six = ">=1.4.1"
+
+[[package]]
+name = "matplotlib"
+version = "3.6.2"
+description = "Python plotting package"
+category = "main"
+optional = false
+python-versions = ">=3.8"
+files = [
+ {file = "matplotlib-3.6.2-cp310-cp310-macosx_10_12_universal2.whl", hash = "sha256:8d0068e40837c1d0df6e3abf1cdc9a34a6d2611d90e29610fa1d2455aeb4e2e5"},
+ {file = "matplotlib-3.6.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:252957e208c23db72ca9918cb33e160c7833faebf295aaedb43f5b083832a267"},
+ {file = "matplotlib-3.6.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d50e8c1e571ee39b5dfbc295c11ad65988879f68009dd281a6e1edbc2ff6c18c"},
+ {file = "matplotlib-3.6.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d840adcad7354be6f2ec28d0706528b0026e4c3934cc6566b84eac18633eab1b"},
+ {file = "matplotlib-3.6.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:78ec3c3412cf277e6252764ee4acbdbec6920cc87ad65862272aaa0e24381eee"},
+ {file = "matplotlib-3.6.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9347cc6822f38db2b1d1ce992f375289670e595a2d1c15961aacbe0977407dfc"},
+ {file = "matplotlib-3.6.2-cp310-cp310-win32.whl", hash = "sha256:e0bbee6c2a5bf2a0017a9b5e397babb88f230e6f07c3cdff4a4c4bc75ed7c617"},
+ {file = "matplotlib-3.6.2-cp310-cp310-win_amd64.whl", hash = "sha256:8a0ae37576ed444fe853709bdceb2be4c7df6f7acae17b8378765bd28e61b3ae"},
+ {file = "matplotlib-3.6.2-cp311-cp311-macosx_10_12_universal2.whl", hash = "sha256:5ecfc6559132116dedfc482d0ad9df8a89dc5909eebffd22f3deb684132d002f"},
+ {file = "matplotlib-3.6.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:9f335e5625feb90e323d7e3868ec337f7b9ad88b5d633f876e3b778813021dab"},
+ {file = "matplotlib-3.6.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b2604c6450f9dd2c42e223b1f5dca9643a23cfecc9fde4a94bb38e0d2693b136"},
+ {file = "matplotlib-3.6.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e5afe0a7ea0e3a7a257907060bee6724a6002b7eec55d0db16fd32409795f3e1"},
+ {file = "matplotlib-3.6.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ca0e7a658fbafcddcaefaa07ba8dae9384be2343468a8e011061791588d839fa"},
+ {file = "matplotlib-3.6.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:32d29c8c26362169c80c5718ce367e8c64f4dd068a424e7110df1dd2ed7bd428"},
+ {file = "matplotlib-3.6.2-cp311-cp311-win32.whl", hash = "sha256:5024b8ed83d7f8809982d095d8ab0b179bebc07616a9713f86d30cf4944acb73"},
+ {file = "matplotlib-3.6.2-cp311-cp311-win_amd64.whl", hash = "sha256:52c2bdd7cd0bf9d5ccdf9c1816568fd4ccd51a4d82419cc5480f548981b47dd0"},
+ {file = "matplotlib-3.6.2-cp38-cp38-macosx_10_12_universal2.whl", hash = "sha256:8a8dbe2cb7f33ff54b16bb5c500673502a35f18ac1ed48625e997d40c922f9cc"},
+ {file = "matplotlib-3.6.2-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:380d48c15ec41102a2b70858ab1dedfa33eb77b2c0982cb65a200ae67a48e9cb"},
+ {file = "matplotlib-3.6.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0844523dfaaff566e39dbfa74e6f6dc42e92f7a365ce80929c5030b84caa563a"},
+ {file = "matplotlib-3.6.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:7f716b6af94dc1b6b97c46401774472f0867e44595990fe80a8ba390f7a0a028"},
+ {file = "matplotlib-3.6.2-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:74153008bd24366cf099d1f1e83808d179d618c4e32edb0d489d526523a94d9f"},
+ {file = "matplotlib-3.6.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f41e57ad63d336fe50d3a67bb8eaa26c09f6dda6a59f76777a99b8ccd8e26aec"},
+ {file = "matplotlib-3.6.2-cp38-cp38-win32.whl", hash = "sha256:d0e9ac04065a814d4cf2c6791a2ad563f739ae3ae830d716d54245c2b96fead6"},
+ {file = "matplotlib-3.6.2-cp38-cp38-win_amd64.whl", hash = "sha256:8a9d899953c722b9afd7e88dbefd8fb276c686c3116a43c577cfabf636180558"},
+ {file = "matplotlib-3.6.2-cp39-cp39-macosx_10_12_universal2.whl", hash = "sha256:f04f97797df35e442ed09f529ad1235d1f1c0f30878e2fe09a2676b71a8801e0"},
+ {file = "matplotlib-3.6.2-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:3964934731fd7a289a91d315919cf757f293969a4244941ab10513d2351b4e83"},
+ {file = "matplotlib-3.6.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:168093410b99f647ba61361b208f7b0d64dde1172b5b1796d765cd243cadb501"},
+ {file = "matplotlib-3.6.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5e16dcaecffd55b955aa5e2b8a804379789c15987e8ebd2f32f01398a81e975b"},
+ {file = "matplotlib-3.6.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:83dc89c5fd728fdb03b76f122f43b4dcee8c61f1489e232d9ad0f58020523e1c"},
+ {file = "matplotlib-3.6.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:795ad83940732b45d39b82571f87af0081c120feff2b12e748d96bb191169e33"},
+ {file = "matplotlib-3.6.2-cp39-cp39-win32.whl", hash = "sha256:19d61ee6414c44a04addbe33005ab1f87539d9f395e25afcbe9a3c50ce77c65c"},
+ {file = "matplotlib-3.6.2-cp39-cp39-win_amd64.whl", hash = "sha256:5ba73aa3aca35d2981e0b31230d58abb7b5d7ca104e543ae49709208d8ce706a"},
+ {file = "matplotlib-3.6.2-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:1836f366272b1557a613f8265db220eb8dd883202bbbabe01bad5a4eadfd0c95"},
+ {file = "matplotlib-3.6.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0eda9d1b43f265da91fb9ae10d6922b5a986e2234470a524e6b18f14095b20d2"},
+ {file = "matplotlib-3.6.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ec9be0f4826cdb3a3a517509dcc5f87f370251b76362051ab59e42b6b765f8c4"},
+ {file = "matplotlib-3.6.2-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:3cef89888a466228fc4e4b2954e740ce8e9afde7c4315fdd18caa1b8de58ca17"},
+ {file = "matplotlib-3.6.2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:54fa9fe27f5466b86126ff38123261188bed568c1019e4716af01f97a12fe812"},
+ {file = "matplotlib-3.6.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e68be81cd8c22b029924b6d0ee814c337c0e706b8d88495a617319e5dd5441c3"},
+ {file = "matplotlib-3.6.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b0ca2c60d3966dfd6608f5f8c49b8a0fcf76de6654f2eda55fc6ef038d5a6f27"},
+ {file = "matplotlib-3.6.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:4426c74761790bff46e3d906c14c7aab727543293eed5a924300a952e1a3a3c1"},
+ {file = "matplotlib-3.6.2.tar.gz", hash = "sha256:b03fd10a1709d0101c054883b550f7c4c5e974f751e2680318759af005964990"},
+]
+
+[package.dependencies]
+contourpy = ">=1.0.1"
+cycler = ">=0.10"
+fonttools = ">=4.22.0"
+kiwisolver = ">=1.0.1"
+numpy = ">=1.19"
+packaging = ">=20.0"
+pillow = ">=6.2.0"
+pyparsing = ">=2.2.1"
+python-dateutil = ">=2.7"
+
+[[package]]
+name = "monty"
+version = "2022.9.9"
+description = "Monty is the missing complement to Python."
+category = "main"
+optional = false
+python-versions = ">=3.5"
+files = [
+ {file = "monty-2022.9.9-py3-none-any.whl", hash = "sha256:f9624c90687486cfebcc1e80a0b1da201a0ea14213fd1f392960cd47d3171907"},
+ {file = "monty-2022.9.9.tar.gz", hash = "sha256:6cca8f14a18a2030b243a1377dfd59049a1ccce007b34f810a8f5eece72b9ceb"},
+]
+
+[package.extras]
+yaml = ["ruamel.yaml"]
+
+[[package]]
+name = "mp-api"
+version = "0.30.5"
+description = "API Server for the Materials Project"
+category = "main"
+optional = false
+python-versions = ">=3.8"
+files = [
+ {file = "mp-api-0.30.5.tar.gz", hash = "sha256:e28033fd801be3e781dcc18420a13cdfe9aa0f6098f2056b0a1126bf7acdf027"},
+ {file = "mp_api-0.30.5-py3-none-any.whl", hash = "sha256:58e3a2d539f68e0610177af9d2482655cbe38b16650227776d26ff614edc17bb"},
+]
+
+[package.dependencies]
+emmet-core = ">=0.36.4"
+monty = ">=2021.3.12"
+msgpack = "*"
+pymatgen = ">=2022.3.7"
+requests = ">=2.23.0"
+setuptools = "*"
+typing-extensions = ">=3.7.4.1"
+
+[package.extras]
+all = ["boto3", "custodian", "emmet-core[all] (>=0.36.4)", "mpcontribs-client"]
+
+[[package]]
+name = "mpmath"
+version = "1.2.1"
+description = "Python library for arbitrary-precision floating-point arithmetic"
+category = "main"
+optional = false
+python-versions = "*"
+files = [
+ {file = "mpmath-1.2.1-py3-none-any.whl", hash = "sha256:604bc21bd22d2322a177c73bdb573994ef76e62edd595d17e00aff24b0667e5c"},
+ {file = "mpmath-1.2.1.tar.gz", hash = "sha256:79ffb45cf9f4b101a807595bcb3e72e0396202e0b1d25d689134b48c4216a81a"},
+]
+
+[package.extras]
+develop = ["codecov", "pycodestyle", "pytest (>=4.6)", "pytest-cov", "wheel"]
+tests = ["pytest (>=4.6)"]
+
+[[package]]
+name = "msgpack"
+version = "1.0.4"
+description = "MessagePack serializer"
+category = "main"
+optional = false
+python-versions = "*"
+files = [
+ {file = "msgpack-1.0.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:4ab251d229d10498e9a2f3b1e68ef64cb393394ec477e3370c457f9430ce9250"},
+ {file = "msgpack-1.0.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:112b0f93202d7c0fef0b7810d465fde23c746a2d482e1e2de2aafd2ce1492c88"},
+ {file = "msgpack-1.0.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:002b5c72b6cd9b4bafd790f364b8480e859b4712e91f43014fe01e4f957b8467"},
+ {file = "msgpack-1.0.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:35bc0faa494b0f1d851fd29129b2575b2e26d41d177caacd4206d81502d4c6a6"},
+ {file = "msgpack-1.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4733359808c56d5d7756628736061c432ded018e7a1dff2d35a02439043321aa"},
+ {file = "msgpack-1.0.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb514ad14edf07a1dbe63761fd30f89ae79b42625731e1ccf5e1f1092950eaa6"},
+ {file = "msgpack-1.0.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:c23080fdeec4716aede32b4e0ef7e213c7b1093eede9ee010949f2a418ced6ba"},
+ {file = "msgpack-1.0.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:49565b0e3d7896d9ea71d9095df15b7f75a035c49be733051c34762ca95bbf7e"},
+ {file = "msgpack-1.0.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:aca0f1644d6b5a73eb3e74d4d64d5d8c6c3d577e753a04c9e9c87d07692c58db"},
+ {file = "msgpack-1.0.4-cp310-cp310-win32.whl", hash = "sha256:0dfe3947db5fb9ce52aaea6ca28112a170db9eae75adf9339a1aec434dc954ef"},
+ {file = "msgpack-1.0.4-cp310-cp310-win_amd64.whl", hash = "sha256:4dea20515f660aa6b7e964433b1808d098dcfcabbebeaaad240d11f909298075"},
+ {file = "msgpack-1.0.4-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:e83f80a7fec1a62cf4e6c9a660e39c7f878f603737a0cdac8c13131d11d97f52"},
+ {file = "msgpack-1.0.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3c11a48cf5e59026ad7cb0dc29e29a01b5a66a3e333dc11c04f7e991fc5510a9"},
+ {file = "msgpack-1.0.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1276e8f34e139aeff1c77a3cefb295598b504ac5314d32c8c3d54d24fadb94c9"},
+ {file = "msgpack-1.0.4-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6c9566f2c39ccced0a38d37c26cc3570983b97833c365a6044edef3574a00c08"},
+ {file = "msgpack-1.0.4-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:fcb8a47f43acc113e24e910399376f7277cf8508b27e5b88499f053de6b115a8"},
+ {file = "msgpack-1.0.4-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:76ee788122de3a68a02ed6f3a16bbcd97bc7c2e39bd4d94be2f1821e7c4a64e6"},
+ {file = "msgpack-1.0.4-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:0a68d3ac0104e2d3510de90a1091720157c319ceeb90d74f7b5295a6bee51bae"},
+ {file = "msgpack-1.0.4-cp36-cp36m-win32.whl", hash = "sha256:85f279d88d8e833ec015650fd15ae5eddce0791e1e8a59165318f371158efec6"},
+ {file = "msgpack-1.0.4-cp36-cp36m-win_amd64.whl", hash = "sha256:c1683841cd4fa45ac427c18854c3ec3cd9b681694caf5bff04edb9387602d661"},
+ {file = "msgpack-1.0.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:a75dfb03f8b06f4ab093dafe3ddcc2d633259e6c3f74bb1b01996f5d8aa5868c"},
+ {file = "msgpack-1.0.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9667bdfdf523c40d2511f0e98a6c9d3603be6b371ae9a238b7ef2dc4e7a427b0"},
+ {file = "msgpack-1.0.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:11184bc7e56fd74c00ead4f9cc9a3091d62ecb96e97653add7a879a14b003227"},
+ {file = "msgpack-1.0.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ac5bd7901487c4a1dd51a8c58f2632b15d838d07ceedaa5e4c080f7190925bff"},
+ {file = "msgpack-1.0.4-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:1e91d641d2bfe91ba4c52039adc5bccf27c335356055825c7f88742c8bb900dd"},
+ {file = "msgpack-1.0.4-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:2a2df1b55a78eb5f5b7d2a4bb221cd8363913830145fad05374a80bf0877cb1e"},
+ {file = "msgpack-1.0.4-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:545e3cf0cf74f3e48b470f68ed19551ae6f9722814ea969305794645da091236"},
+ {file = "msgpack-1.0.4-cp37-cp37m-win32.whl", hash = "sha256:2cc5ca2712ac0003bcb625c96368fd08a0f86bbc1a5578802512d87bc592fe44"},
+ {file = "msgpack-1.0.4-cp37-cp37m-win_amd64.whl", hash = "sha256:eba96145051ccec0ec86611fe9cf693ce55f2a3ce89c06ed307de0e085730ec1"},
+ {file = "msgpack-1.0.4-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:7760f85956c415578c17edb39eed99f9181a48375b0d4a94076d84148cf67b2d"},
+ {file = "msgpack-1.0.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:449e57cc1ff18d3b444eb554e44613cffcccb32805d16726a5494038c3b93dab"},
+ {file = "msgpack-1.0.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:d603de2b8d2ea3f3bcb2efe286849aa7a81531abc52d8454da12f46235092bcb"},
+ {file = "msgpack-1.0.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:48f5d88c99f64c456413d74a975bd605a9b0526293218a3b77220a2c15458ba9"},
+ {file = "msgpack-1.0.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6916c78f33602ecf0509cc40379271ba0f9ab572b066bd4bdafd7434dee4bc6e"},
+ {file = "msgpack-1.0.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:81fc7ba725464651190b196f3cd848e8553d4d510114a954681fd0b9c479d7e1"},
+ {file = "msgpack-1.0.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:d5b5b962221fa2c5d3a7f8133f9abffc114fe218eb4365e40f17732ade576c8e"},
+ {file = "msgpack-1.0.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:77ccd2af37f3db0ea59fb280fa2165bf1b096510ba9fe0cc2bf8fa92a22fdb43"},
+ {file = "msgpack-1.0.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b17be2478b622939e39b816e0aa8242611cc8d3583d1cd8ec31b249f04623243"},
+ {file = "msgpack-1.0.4-cp38-cp38-win32.whl", hash = "sha256:2bb8cdf50dd623392fa75525cce44a65a12a00c98e1e37bf0fb08ddce2ff60d2"},
+ {file = "msgpack-1.0.4-cp38-cp38-win_amd64.whl", hash = "sha256:26b8feaca40a90cbe031b03d82b2898bf560027160d3eae1423f4a67654ec5d6"},
+ {file = "msgpack-1.0.4-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:462497af5fd4e0edbb1559c352ad84f6c577ffbbb708566a0abaaa84acd9f3ae"},
+ {file = "msgpack-1.0.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2999623886c5c02deefe156e8f869c3b0aaeba14bfc50aa2486a0415178fce55"},
+ {file = "msgpack-1.0.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:f0029245c51fd9473dc1aede1160b0a29f4a912e6b1dd353fa6d317085b219da"},
+ {file = "msgpack-1.0.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ed6f7b854a823ea44cf94919ba3f727e230da29feb4a99711433f25800cf747f"},
+ {file = "msgpack-1.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0df96d6eaf45ceca04b3f3b4b111b86b33785683d682c655063ef8057d61fd92"},
+ {file = "msgpack-1.0.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6a4192b1ab40f8dca3f2877b70e63799d95c62c068c84dc028b40a6cb03ccd0f"},
+ {file = "msgpack-1.0.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:0e3590f9fb9f7fbc36df366267870e77269c03172d086fa76bb4eba8b2b46624"},
+ {file = "msgpack-1.0.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:1576bd97527a93c44fa856770197dec00d223b0b9f36ef03f65bac60197cedf8"},
+ {file = "msgpack-1.0.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:63e29d6e8c9ca22b21846234913c3466b7e4ee6e422f205a2988083de3b08cae"},
+ {file = "msgpack-1.0.4-cp39-cp39-win32.whl", hash = "sha256:fb62ea4b62bfcb0b380d5680f9a4b3f9a2d166d9394e9bbd9666c0ee09a3645c"},
+ {file = "msgpack-1.0.4-cp39-cp39-win_amd64.whl", hash = "sha256:4d5834a2a48965a349da1c5a79760d94a1a0172fbb5ab6b5b33cbf8447e109ce"},
+ {file = "msgpack-1.0.4.tar.gz", hash = "sha256:f5d869c18f030202eb412f08b28d2afeea553d6613aee89e200d7aca7ef01f5f"},
+]
+
+[[package]]
+name = "networkx"
+version = "2.8.8"
+description = "Python package for creating and manipulating graphs and networks"
+category = "main"
+optional = false
+python-versions = ">=3.8"
+files = [
+ {file = "networkx-2.8.8-py3-none-any.whl", hash = "sha256:e435dfa75b1d7195c7b8378c3859f0445cd88c6b0375c181ed66823a9ceb7524"},
+ {file = "networkx-2.8.8.tar.gz", hash = "sha256:230d388117af870fce5647a3c52401fcf753e94720e6ea6b4197a5355648885e"},
+]
+
+[package.extras]
+default = ["matplotlib (>=3.4)", "numpy (>=1.19)", "pandas (>=1.3)", "scipy (>=1.8)"]
+developer = ["mypy (>=0.982)", "pre-commit (>=2.20)"]
+doc = ["nb2plots (>=0.6)", "numpydoc (>=1.5)", "pillow (>=9.2)", "pydata-sphinx-theme (>=0.11)", "sphinx (>=5.2)", "sphinx-gallery (>=0.11)", "texext (>=0.6.6)"]
+extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.9)", "sympy (>=1.10)"]
+test = ["codecov (>=2.1)", "pytest (>=7.2)", "pytest-cov (>=4.0)"]
+
+[[package]]
+name = "numpy"
+version = "1.24.1"
+description = "Fundamental package for array computing in Python"
+category = "main"
+optional = false
+python-versions = ">=3.8"
+files = [
+ {file = "numpy-1.24.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:179a7ef0889ab769cc03573b6217f54c8bd8e16cef80aad369e1e8185f994cd7"},
+ {file = "numpy-1.24.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b09804ff570b907da323b3d762e74432fb07955701b17b08ff1b5ebaa8cfe6a9"},
+ {file = "numpy-1.24.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f1b739841821968798947d3afcefd386fa56da0caf97722a5de53e07c4ccedc7"},
+ {file = "numpy-1.24.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e3463e6ac25313462e04aea3fb8a0a30fb906d5d300f58b3bc2c23da6a15398"},
+ {file = "numpy-1.24.1-cp310-cp310-win32.whl", hash = "sha256:b31da69ed0c18be8b77bfce48d234e55d040793cebb25398e2a7d84199fbc7e2"},
+ {file = "numpy-1.24.1-cp310-cp310-win_amd64.whl", hash = "sha256:b07b40f5fb4fa034120a5796288f24c1fe0e0580bbfff99897ba6267af42def2"},
+ {file = "numpy-1.24.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:7094891dcf79ccc6bc2a1f30428fa5edb1e6fb955411ffff3401fb4ea93780a8"},
+ {file = "numpy-1.24.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:28e418681372520c992805bb723e29d69d6b7aa411065f48216d8329d02ba032"},
+ {file = "numpy-1.24.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e274f0f6c7efd0d577744f52032fdd24344f11c5ae668fe8d01aac0422611df1"},
+ {file = "numpy-1.24.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0044f7d944ee882400890f9ae955220d29b33d809a038923d88e4e01d652acd9"},
+ {file = "numpy-1.24.1-cp311-cp311-win32.whl", hash = "sha256:442feb5e5bada8408e8fcd43f3360b78683ff12a4444670a7d9e9824c1817d36"},
+ {file = "numpy-1.24.1-cp311-cp311-win_amd64.whl", hash = "sha256:de92efa737875329b052982e37bd4371d52cabf469f83e7b8be9bb7752d67e51"},
+ {file = "numpy-1.24.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b162ac10ca38850510caf8ea33f89edcb7b0bb0dfa5592d59909419986b72407"},
+ {file = "numpy-1.24.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:26089487086f2648944f17adaa1a97ca6aee57f513ba5f1c0b7ebdabbe2b9954"},
+ {file = "numpy-1.24.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:caf65a396c0d1f9809596be2e444e3bd4190d86d5c1ce21f5fc4be60a3bc5b36"},
+ {file = "numpy-1.24.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b0677a52f5d896e84414761531947c7a330d1adc07c3a4372262f25d84af7bf7"},
+ {file = "numpy-1.24.1-cp38-cp38-win32.whl", hash = "sha256:dae46bed2cb79a58d6496ff6d8da1e3b95ba09afeca2e277628171ca99b99db1"},
+ {file = "numpy-1.24.1-cp38-cp38-win_amd64.whl", hash = "sha256:6ec0c021cd9fe732e5bab6401adea5a409214ca5592cd92a114f7067febcba0c"},
+ {file = "numpy-1.24.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:28bc9750ae1f75264ee0f10561709b1462d450a4808cd97c013046073ae64ab6"},
+ {file = "numpy-1.24.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:84e789a085aabef2f36c0515f45e459f02f570c4b4c4c108ac1179c34d475ed7"},
+ {file = "numpy-1.24.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8e669fbdcdd1e945691079c2cae335f3e3a56554e06bbd45d7609a6cf568c700"},
+ {file = "numpy-1.24.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef85cf1f693c88c1fd229ccd1055570cb41cdf4875873b7728b6301f12cd05bf"},
+ {file = "numpy-1.24.1-cp39-cp39-win32.whl", hash = "sha256:87a118968fba001b248aac90e502c0b13606721b1343cdaddbc6e552e8dfb56f"},
+ {file = "numpy-1.24.1-cp39-cp39-win_amd64.whl", hash = "sha256:ddc7ab52b322eb1e40521eb422c4e0a20716c271a306860979d450decbb51b8e"},
+ {file = "numpy-1.24.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:ed5fb71d79e771ec930566fae9c02626b939e37271ec285e9efaf1b5d4370e7d"},
+ {file = "numpy-1.24.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad2925567f43643f51255220424c23d204024ed428afc5aad0f86f3ffc080086"},
+ {file = "numpy-1.24.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:cfa1161c6ac8f92dea03d625c2d0c05e084668f4a06568b77a25a89111621566"},
+ {file = "numpy-1.24.1.tar.gz", hash = "sha256:2386da9a471cc00a1f47845e27d916d5ec5346ae9696e01a8a34760858fe9dd2"},
+]
+
+[[package]]
+name = "nvidia-cublas-cu11"
+version = "11.10.3.66"
+description = "CUBLAS native runtime libraries"
+category = "main"
+optional = false
+python-versions = ">=3"
+files = [
+ {file = "nvidia_cublas_cu11-11.10.3.66-py3-none-manylinux1_x86_64.whl", hash = "sha256:d32e4d75f94ddfb93ea0a5dda08389bcc65d8916a25cb9f37ac89edaeed3bded"},
+ {file = "nvidia_cublas_cu11-11.10.3.66-py3-none-win_amd64.whl", hash = "sha256:8ac17ba6ade3ed56ab898a036f9ae0756f1e81052a317bf98f8c6d18dc3ae49e"},
+]
+
+[package.dependencies]
+setuptools = "*"
+wheel = "*"
+
+[[package]]
+name = "nvidia-cuda-nvrtc-cu11"
+version = "11.7.99"
+description = "NVRTC native runtime libraries"
+category = "main"
+optional = false
+python-versions = ">=3"
+files = [
+ {file = "nvidia_cuda_nvrtc_cu11-11.7.99-2-py3-none-manylinux1_x86_64.whl", hash = "sha256:9f1562822ea264b7e34ed5930567e89242d266448e936b85bc97a3370feabb03"},
+ {file = "nvidia_cuda_nvrtc_cu11-11.7.99-py3-none-manylinux1_x86_64.whl", hash = "sha256:f7d9610d9b7c331fa0da2d1b2858a4a8315e6d49765091d28711c8946e7425e7"},
+ {file = "nvidia_cuda_nvrtc_cu11-11.7.99-py3-none-win_amd64.whl", hash = "sha256:f2effeb1309bdd1b3854fc9b17eaf997808f8b25968ce0c7070945c4265d64a3"},
+]
+
+[package.dependencies]
+setuptools = "*"
+wheel = "*"
+
+[[package]]
+name = "nvidia-cuda-runtime-cu11"
+version = "11.7.99"
+description = "CUDA Runtime native Libraries"
+category = "main"
+optional = false
+python-versions = ">=3"
+files = [
+ {file = "nvidia_cuda_runtime_cu11-11.7.99-py3-none-manylinux1_x86_64.whl", hash = "sha256:cc768314ae58d2641f07eac350f40f99dcb35719c4faff4bc458a7cd2b119e31"},
+ {file = "nvidia_cuda_runtime_cu11-11.7.99-py3-none-win_amd64.whl", hash = "sha256:bc77fa59a7679310df9d5c70ab13c4e34c64ae2124dd1efd7e5474b71be125c7"},
+]
+
+[package.dependencies]
+setuptools = "*"
+wheel = "*"
+
+[[package]]
+name = "nvidia-cudnn-cu11"
+version = "8.5.0.96"
+description = "cuDNN runtime libraries"
+category = "main"
+optional = false
+python-versions = ">=3"
+files = [
+ {file = "nvidia_cudnn_cu11-8.5.0.96-2-py3-none-manylinux1_x86_64.whl", hash = "sha256:402f40adfc6f418f9dae9ab402e773cfed9beae52333f6d86ae3107a1b9527e7"},
+ {file = "nvidia_cudnn_cu11-8.5.0.96-py3-none-manylinux1_x86_64.whl", hash = "sha256:71f8111eb830879ff2836db3cccf03bbd735df9b0d17cd93761732ac50a8a108"},
+]
+
+[package.dependencies]
+setuptools = "*"
+wheel = "*"
+
+[[package]]
+name = "packaging"
+version = "22.0"
+description = "Core utilities for Python packages"
+category = "main"
+optional = false
+python-versions = ">=3.7"
+files = [
+ {file = "packaging-22.0-py3-none-any.whl", hash = "sha256:957e2148ba0e1a3b282772e791ef1d8083648bc131c8ab0c1feba110ce1146c3"},
+ {file = "packaging-22.0.tar.gz", hash = "sha256:2198ec20bd4c017b8f9717e00f0c8714076fc2fd93816750ab48e2c41de2cfd3"},
+]
+
+[[package]]
+name = "palettable"
+version = "3.3.0"
+description = "Color palettes for Python"
+category = "main"
+optional = false
+python-versions = "*"
+files = [
+ {file = "palettable-3.3.0-py2.py3-none-any.whl", hash = "sha256:c3bf3f548fc228e86bd3d16928bbf8d621c1d1098791ceab446d0e3a5e1298d1"},
+ {file = "palettable-3.3.0.tar.gz", hash = "sha256:72feca71cf7d79830cd6d9181b02edf227b867d503bec953cf9fa91bf44896bd"},
+]
+
+[[package]]
+name = "pandas"
+version = "1.5.2"
+description = "Powerful data structures for data analysis, time series, and statistics"
+category = "main"
+optional = false
+python-versions = ">=3.8"
+files = [
+ {file = "pandas-1.5.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:e9dbacd22555c2d47f262ef96bb4e30880e5956169741400af8b306bbb24a273"},
+ {file = "pandas-1.5.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e2b83abd292194f350bb04e188f9379d36b8dfac24dd445d5c87575f3beaf789"},
+ {file = "pandas-1.5.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2552bffc808641c6eb471e55aa6899fa002ac94e4eebfa9ec058649122db5824"},
+ {file = "pandas-1.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fc87eac0541a7d24648a001d553406f4256e744d92df1df8ebe41829a915028"},
+ {file = "pandas-1.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d0d8fd58df5d17ddb8c72a5075d87cd80d71b542571b5f78178fb067fa4e9c72"},
+ {file = "pandas-1.5.2-cp310-cp310-win_amd64.whl", hash = "sha256:4aed257c7484d01c9a194d9a94758b37d3d751849c05a0050c087a358c41ad1f"},
+ {file = "pandas-1.5.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:375262829c8c700c3e7cbb336810b94367b9c4889818bbd910d0ecb4e45dc261"},
+ {file = "pandas-1.5.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:cc3cd122bea268998b79adebbb8343b735a5511ec14efb70a39e7acbc11ccbdc"},
+ {file = "pandas-1.5.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b4f5a82afa4f1ff482ab8ded2ae8a453a2cdfde2001567b3ca24a4c5c5ca0db3"},
+ {file = "pandas-1.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8092a368d3eb7116e270525329a3e5c15ae796ccdf7ccb17839a73b4f5084a39"},
+ {file = "pandas-1.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6257b314fc14958f8122779e5a1557517b0f8e500cfb2bd53fa1f75a8ad0af2"},
+ {file = "pandas-1.5.2-cp311-cp311-win_amd64.whl", hash = "sha256:82ae615826da838a8e5d4d630eb70c993ab8636f0eff13cb28aafc4291b632b5"},
+ {file = "pandas-1.5.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:457d8c3d42314ff47cc2d6c54f8fc0d23954b47977b2caed09cd9635cb75388b"},
+ {file = "pandas-1.5.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:c009a92e81ce836212ce7aa98b219db7961a8b95999b97af566b8dc8c33e9519"},
+ {file = "pandas-1.5.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:71f510b0efe1629bf2f7c0eadb1ff0b9cf611e87b73cd017e6b7d6adb40e2b3a"},
+ {file = "pandas-1.5.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a40dd1e9f22e01e66ed534d6a965eb99546b41d4d52dbdb66565608fde48203f"},
+ {file = "pandas-1.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ae7e989f12628f41e804847a8cc2943d362440132919a69429d4dea1f164da0"},
+ {file = "pandas-1.5.2-cp38-cp38-win32.whl", hash = "sha256:530948945e7b6c95e6fa7aa4be2be25764af53fba93fe76d912e35d1c9ee46f5"},
+ {file = "pandas-1.5.2-cp38-cp38-win_amd64.whl", hash = "sha256:73f219fdc1777cf3c45fde7f0708732ec6950dfc598afc50588d0d285fddaefc"},
+ {file = "pandas-1.5.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9608000a5a45f663be6af5c70c3cbe634fa19243e720eb380c0d378666bc7702"},
+ {file = "pandas-1.5.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:315e19a3e5c2ab47a67467fc0362cb36c7c60a93b6457f675d7d9615edad2ebe"},
+ {file = "pandas-1.5.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e18bc3764cbb5e118be139b3b611bc3fbc5d3be42a7e827d1096f46087b395eb"},
+ {file = "pandas-1.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0183cb04a057cc38fde5244909fca9826d5d57c4a5b7390c0cc3fa7acd9fa883"},
+ {file = "pandas-1.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:344021ed3e639e017b452aa8f5f6bf38a8806f5852e217a7594417fb9bbfa00e"},
+ {file = "pandas-1.5.2-cp39-cp39-win32.whl", hash = "sha256:e7469271497960b6a781eaa930cba8af400dd59b62ec9ca2f4d31a19f2f91090"},
+ {file = "pandas-1.5.2-cp39-cp39-win_amd64.whl", hash = "sha256:c218796d59d5abd8780170c937b812c9637e84c32f8271bbf9845970f8c1351f"},
+ {file = "pandas-1.5.2.tar.gz", hash = "sha256:220b98d15cee0b2cd839a6358bd1f273d0356bf964c1a1aeb32d47db0215488b"},
+]
+
+[package.dependencies]
+numpy = [
+ {version = ">=1.20.3", markers = "python_version < \"3.10\""},
+ {version = ">=1.21.0", markers = "python_version >= \"3.10\""},
+ {version = ">=1.23.2", markers = "python_version >= \"3.11\""},
+]
+python-dateutil = ">=2.8.1"
+pytz = ">=2020.1"
+
+[package.extras]
+test = ["hypothesis (>=5.5.3)", "pytest (>=6.0)", "pytest-xdist (>=1.31)"]
+
+[[package]]
+name = "pillow"
+version = "9.4.0"
+description = "Python Imaging Library (Fork)"
+category = "main"
+optional = false
+python-versions = ">=3.7"
+files = [
+ {file = "Pillow-9.4.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:2968c58feca624bb6c8502f9564dd187d0e1389964898f5e9e1fbc8533169157"},
+ {file = "Pillow-9.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c5c1362c14aee73f50143d74389b2c158707b4abce2cb055b7ad37ce60738d47"},
+ {file = "Pillow-9.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd752c5ff1b4a870b7661234694f24b1d2b9076b8bf337321a814c612665f343"},
+ {file = "Pillow-9.4.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9a3049a10261d7f2b6514d35bbb7a4dfc3ece4c4de14ef5876c4b7a23a0e566d"},
+ {file = "Pillow-9.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:16a8df99701f9095bea8a6c4b3197da105df6f74e6176c5b410bc2df2fd29a57"},
+ {file = "Pillow-9.4.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:94cdff45173b1919350601f82d61365e792895e3c3a3443cf99819e6fbf717a5"},
+ {file = "Pillow-9.4.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:ed3e4b4e1e6de75fdc16d3259098de7c6571b1a6cc863b1a49e7d3d53e036070"},
+ {file = "Pillow-9.4.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d5b2f8a31bd43e0f18172d8ac82347c8f37ef3e0b414431157718aa234991b28"},
+ {file = "Pillow-9.4.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:09b89ddc95c248ee788328528e6a2996e09eaccddeeb82a5356e92645733be35"},
+ {file = "Pillow-9.4.0-cp310-cp310-win32.whl", hash = "sha256:f09598b416ba39a8f489c124447b007fe865f786a89dbfa48bb5cf395693132a"},
+ {file = "Pillow-9.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:f6e78171be3fb7941f9910ea15b4b14ec27725865a73c15277bc39f5ca4f8391"},
+ {file = "Pillow-9.4.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:3fa1284762aacca6dc97474ee9c16f83990b8eeb6697f2ba17140d54b453e133"},
+ {file = "Pillow-9.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:eaef5d2de3c7e9b21f1e762f289d17b726c2239a42b11e25446abf82b26ac132"},
+ {file = "Pillow-9.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a4dfdae195335abb4e89cc9762b2edc524f3c6e80d647a9a81bf81e17e3fb6f0"},
+ {file = "Pillow-9.4.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6abfb51a82e919e3933eb137e17c4ae9c0475a25508ea88993bb59faf82f3b35"},
+ {file = "Pillow-9.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:451f10ef963918e65b8869e17d67db5e2f4ab40e716ee6ce7129b0cde2876eab"},
+ {file = "Pillow-9.4.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:6663977496d616b618b6cfa43ec86e479ee62b942e1da76a2c3daa1c75933ef4"},
+ {file = "Pillow-9.4.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:60e7da3a3ad1812c128750fc1bc14a7ceeb8d29f77e0a2356a8fb2aa8925287d"},
+ {file = "Pillow-9.4.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:19005a8e58b7c1796bc0167862b1f54a64d3b44ee5d48152b06bb861458bc0f8"},
+ {file = "Pillow-9.4.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f715c32e774a60a337b2bb8ad9839b4abf75b267a0f18806f6f4f5f1688c4b5a"},
+ {file = "Pillow-9.4.0-cp311-cp311-win32.whl", hash = "sha256:b222090c455d6d1a64e6b7bb5f4035c4dff479e22455c9eaa1bdd4c75b52c80c"},
+ {file = "Pillow-9.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:ba6612b6548220ff5e9df85261bddc811a057b0b465a1226b39bfb8550616aee"},
+ {file = "Pillow-9.4.0-cp37-cp37m-macosx_10_10_x86_64.whl", hash = "sha256:5f532a2ad4d174eb73494e7397988e22bf427f91acc8e6ebf5bb10597b49c493"},
+ {file = "Pillow-9.4.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dd5a9c3091a0f414a963d427f920368e2b6a4c2f7527fdd82cde8ef0bc7a327"},
+ {file = "Pillow-9.4.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ef21af928e807f10bf4141cad4746eee692a0dd3ff56cfb25fce076ec3cc8abe"},
+ {file = "Pillow-9.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:847b114580c5cc9ebaf216dd8c8dbc6b00a3b7ab0131e173d7120e6deade1f57"},
+ {file = "Pillow-9.4.0-cp37-cp37m-manylinux_2_28_aarch64.whl", hash = "sha256:653d7fb2df65efefbcbf81ef5fe5e5be931f1ee4332c2893ca638c9b11a409c4"},
+ {file = "Pillow-9.4.0-cp37-cp37m-manylinux_2_28_x86_64.whl", hash = "sha256:46f39cab8bbf4a384ba7cb0bc8bae7b7062b6a11cfac1ca4bc144dea90d4a9f5"},
+ {file = "Pillow-9.4.0-cp37-cp37m-win32.whl", hash = "sha256:7ac7594397698f77bce84382929747130765f66406dc2cd8b4ab4da68ade4c6e"},
+ {file = "Pillow-9.4.0-cp37-cp37m-win_amd64.whl", hash = "sha256:46c259e87199041583658457372a183636ae8cd56dbf3f0755e0f376a7f9d0e6"},
+ {file = "Pillow-9.4.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:0e51f608da093e5d9038c592b5b575cadc12fd748af1479b5e858045fff955a9"},
+ {file = "Pillow-9.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:765cb54c0b8724a7c12c55146ae4647e0274a839fb6de7bcba841e04298e1011"},
+ {file = "Pillow-9.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:519e14e2c49fcf7616d6d2cfc5c70adae95682ae20f0395e9280db85e8d6c4df"},
+ {file = "Pillow-9.4.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d197df5489004db87d90b918033edbeee0bd6df3848a204bca3ff0a903bef837"},
+ {file = "Pillow-9.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0845adc64fe9886db00f5ab68c4a8cd933ab749a87747555cec1c95acea64b0b"},
+ {file = "Pillow-9.4.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:e1339790c083c5a4de48f688b4841f18df839eb3c9584a770cbd818b33e26d5d"},
+ {file = "Pillow-9.4.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:a96e6e23f2b79433390273eaf8cc94fec9c6370842e577ab10dabdcc7ea0a66b"},
+ {file = "Pillow-9.4.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:7cfc287da09f9d2a7ec146ee4d72d6ea1342e770d975e49a8621bf54eaa8f30f"},
+ {file = "Pillow-9.4.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d7081c084ceb58278dd3cf81f836bc818978c0ccc770cbbb202125ddabec6628"},
+ {file = "Pillow-9.4.0-cp38-cp38-win32.whl", hash = "sha256:df41112ccce5d47770a0c13651479fbcd8793f34232a2dd9faeccb75eb5d0d0d"},
+ {file = "Pillow-9.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:7a21222644ab69ddd9967cfe6f2bb420b460dae4289c9d40ff9a4896e7c35c9a"},
+ {file = "Pillow-9.4.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0f3269304c1a7ce82f1759c12ce731ef9b6e95b6df829dccd9fe42912cc48569"},
+ {file = "Pillow-9.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:cb362e3b0976dc994857391b776ddaa8c13c28a16f80ac6522c23d5257156bed"},
+ {file = "Pillow-9.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a2e0f87144fcbbe54297cae708c5e7f9da21a4646523456b00cc956bd4c65815"},
+ {file = "Pillow-9.4.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:28676836c7796805914b76b1837a40f76827ee0d5398f72f7dcc634bae7c6264"},
+ {file = "Pillow-9.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0884ba7b515163a1a05440a138adeb722b8a6ae2c2b33aea93ea3118dd3a899e"},
+ {file = "Pillow-9.4.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:53dcb50fbdc3fb2c55431a9b30caeb2f7027fcd2aeb501459464f0214200a503"},
+ {file = "Pillow-9.4.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:e8c5cf126889a4de385c02a2c3d3aba4b00f70234bfddae82a5eaa3ee6d5e3e6"},
+ {file = "Pillow-9.4.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:6c6b1389ed66cdd174d040105123a5a1bc91d0aa7059c7261d20e583b6d8cbd2"},
+ {file = "Pillow-9.4.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:0dd4c681b82214b36273c18ca7ee87065a50e013112eea7d78c7a1b89a739153"},
+ {file = "Pillow-9.4.0-cp39-cp39-win32.whl", hash = "sha256:6d9dfb9959a3b0039ee06c1a1a90dc23bac3b430842dcb97908ddde05870601c"},
+ {file = "Pillow-9.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:54614444887e0d3043557d9dbc697dbb16cfb5a35d672b7a0fcc1ed0cf1c600b"},
+ {file = "Pillow-9.4.0-pp38-pypy38_pp73-macosx_10_10_x86_64.whl", hash = "sha256:b9b752ab91e78234941e44abdecc07f1f0d8f51fb62941d32995b8161f68cfe5"},
+ {file = "Pillow-9.4.0-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d3b56206244dc8711f7e8b7d6cad4663917cd5b2d950799425076681e8766286"},
+ {file = "Pillow-9.4.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aabdab8ec1e7ca7f1434d042bf8b1e92056245fb179790dc97ed040361f16bfd"},
+ {file = "Pillow-9.4.0-pp38-pypy38_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:db74f5562c09953b2c5f8ec4b7dfd3f5421f31811e97d1dbc0a7c93d6e3a24df"},
+ {file = "Pillow-9.4.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:e9d7747847c53a16a729b6ee5e737cf170f7a16611c143d95aa60a109a59c336"},
+ {file = "Pillow-9.4.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:b52ff4f4e002f828ea6483faf4c4e8deea8d743cf801b74910243c58acc6eda3"},
+ {file = "Pillow-9.4.0-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:575d8912dca808edd9acd6f7795199332696d3469665ef26163cd090fa1f8bfa"},
+ {file = "Pillow-9.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c3c4ed2ff6760e98d262e0cc9c9a7f7b8a9f61aa4d47c58835cdaf7b0b8811bb"},
+ {file = "Pillow-9.4.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:e621b0246192d3b9cb1dc62c78cfa4c6f6d2ddc0ec207d43c0dedecb914f152a"},
+ {file = "Pillow-9.4.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:8f127e7b028900421cad64f51f75c051b628db17fb00e099eb148761eed598c9"},
+ {file = "Pillow-9.4.0.tar.gz", hash = "sha256:a1c2d7780448eb93fbcc3789bf3916aa5720d942e37945f4056680317f1cd23e"},
+]
+
+[package.extras]
+docs = ["furo", "olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-issues (>=3.0.1)", "sphinx-removed-in", "sphinxext-opengraph"]
+tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"]
+
+[[package]]
+name = "plotly"
+version = "5.11.0"
+description = "An open-source, interactive data visualization library for Python"
+category = "main"
+optional = false
+python-versions = ">=3.6"
+files = [
+ {file = "plotly-5.11.0-py2.py3-none-any.whl", hash = "sha256:52fd74b08aa4fd5a55b9d3034a30dbb746e572d7ed84897422f927fdf687ea5f"},
+ {file = "plotly-5.11.0.tar.gz", hash = "sha256:4efef479c2ec1d86dcdac8405b6ca70ca65649a77408e39a7e84a1ea2db6c787"},
+]
+
+[package.dependencies]
+tenacity = ">=6.2.0"
+
+[[package]]
+name = "pybtex"
+version = "0.24.0"
+description = "A BibTeX-compatible bibliography processor in Python"
+category = "main"
+optional = false
+python-versions = ">=2.7,!=3.0.*,!=3.1.*,!=3.2.*"
+files = [
+ {file = "pybtex-0.24.0-py2.py3-none-any.whl", hash = "sha256:e1e0c8c69998452fea90e9179aa2a98ab103f3eed894405b7264e517cc2fcc0f"},
+ {file = "pybtex-0.24.0.tar.gz", hash = "sha256:818eae35b61733e5c007c3fcd2cfb75ed1bc8b4173c1f70b56cc4c0802d34755"},
+]
+
+[package.dependencies]
+latexcodec = ">=1.0.4"
+PyYAML = ">=3.01"
+six = "*"
+
+[package.extras]
+test = ["pytest"]
+
+[[package]]
+name = "pydantic"
+version = "1.10.4"
+description = "Data validation and settings management using python type hints"
+category = "main"
+optional = false
+python-versions = ">=3.7"
+files = [
+ {file = "pydantic-1.10.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:b5635de53e6686fe7a44b5cf25fcc419a0d5e5c1a1efe73d49d48fe7586db854"},
+ {file = "pydantic-1.10.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6dc1cc241440ed7ca9ab59d9929075445da6b7c94ced281b3dd4cfe6c8cff817"},
+ {file = "pydantic-1.10.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:51bdeb10d2db0f288e71d49c9cefa609bca271720ecd0c58009bd7504a0c464c"},
+ {file = "pydantic-1.10.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:78cec42b95dbb500a1f7120bdf95c401f6abb616bbe8785ef09887306792e66e"},
+ {file = "pydantic-1.10.4-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:8775d4ef5e7299a2f4699501077a0defdaac5b6c4321173bcb0f3c496fbadf85"},
+ {file = "pydantic-1.10.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:572066051eeac73d23f95ba9a71349c42a3e05999d0ee1572b7860235b850cc6"},
+ {file = "pydantic-1.10.4-cp310-cp310-win_amd64.whl", hash = "sha256:7feb6a2d401f4d6863050f58325b8d99c1e56f4512d98b11ac64ad1751dc647d"},
+ {file = "pydantic-1.10.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:39f4a73e5342b25c2959529f07f026ef58147249f9b7431e1ba8414a36761f53"},
+ {file = "pydantic-1.10.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:983e720704431a6573d626b00662eb78a07148c9115129f9b4351091ec95ecc3"},
+ {file = "pydantic-1.10.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75d52162fe6b2b55964fbb0af2ee58e99791a3138588c482572bb6087953113a"},
+ {file = "pydantic-1.10.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fdf8d759ef326962b4678d89e275ffc55b7ce59d917d9f72233762061fd04a2d"},
+ {file = "pydantic-1.10.4-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:05a81b006be15655b2a1bae5faa4280cf7c81d0e09fcb49b342ebf826abe5a72"},
+ {file = "pydantic-1.10.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d88c4c0e5c5dfd05092a4b271282ef0588e5f4aaf345778056fc5259ba098857"},
+ {file = "pydantic-1.10.4-cp311-cp311-win_amd64.whl", hash = "sha256:6a05a9db1ef5be0fe63e988f9617ca2551013f55000289c671f71ec16f4985e3"},
+ {file = "pydantic-1.10.4-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:887ca463c3bc47103c123bc06919c86720e80e1214aab79e9b779cda0ff92a00"},
+ {file = "pydantic-1.10.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fdf88ab63c3ee282c76d652fc86518aacb737ff35796023fae56a65ced1a5978"},
+ {file = "pydantic-1.10.4-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a48f1953c4a1d9bd0b5167ac50da9a79f6072c63c4cef4cf2a3736994903583e"},
+ {file = "pydantic-1.10.4-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:a9f2de23bec87ff306aef658384b02aa7c32389766af3c5dee9ce33e80222dfa"},
+ {file = "pydantic-1.10.4-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:cd8702c5142afda03dc2b1ee6bc358b62b3735b2cce53fc77b31ca9f728e4bc8"},
+ {file = "pydantic-1.10.4-cp37-cp37m-win_amd64.whl", hash = "sha256:6e7124d6855b2780611d9f5e1e145e86667eaa3bd9459192c8dc1a097f5e9903"},
+ {file = "pydantic-1.10.4-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0b53e1d41e97063d51a02821b80538053ee4608b9a181c1005441f1673c55423"},
+ {file = "pydantic-1.10.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:55b1625899acd33229c4352ce0ae54038529b412bd51c4915349b49ca575258f"},
+ {file = "pydantic-1.10.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:301d626a59edbe5dfb48fcae245896379a450d04baeed50ef40d8199f2733b06"},
+ {file = "pydantic-1.10.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b6f9d649892a6f54a39ed56b8dfd5e08b5f3be5f893da430bed76975f3735d15"},
+ {file = "pydantic-1.10.4-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:d7b5a3821225f5c43496c324b0d6875fde910a1c2933d726a743ce328fbb2a8c"},
+ {file = "pydantic-1.10.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:f2f7eb6273dd12472d7f218e1fef6f7c7c2f00ac2e1ecde4db8824c457300416"},
+ {file = "pydantic-1.10.4-cp38-cp38-win_amd64.whl", hash = "sha256:4b05697738e7d2040696b0a66d9f0a10bec0efa1883ca75ee9e55baf511909d6"},
+ {file = "pydantic-1.10.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:a9a6747cac06c2beb466064dda999a13176b23535e4c496c9d48e6406f92d42d"},
+ {file = "pydantic-1.10.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:eb992a1ef739cc7b543576337bebfc62c0e6567434e522e97291b251a41dad7f"},
+ {file = "pydantic-1.10.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:990406d226dea0e8f25f643b370224771878142155b879784ce89f633541a024"},
+ {file = "pydantic-1.10.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2e82a6d37a95e0b1b42b82ab340ada3963aea1317fd7f888bb6b9dfbf4fff57c"},
+ {file = "pydantic-1.10.4-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9193d4f4ee8feca58bc56c8306bcb820f5c7905fd919e0750acdeeeef0615b28"},
+ {file = "pydantic-1.10.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:2b3ce5f16deb45c472dde1a0ee05619298c864a20cded09c4edd820e1454129f"},
+ {file = "pydantic-1.10.4-cp39-cp39-win_amd64.whl", hash = "sha256:9cbdc268a62d9a98c56e2452d6c41c0263d64a2009aac69246486f01b4f594c4"},
+ {file = "pydantic-1.10.4-py3-none-any.whl", hash = "sha256:4948f264678c703f3877d1c8877c4e3b2e12e549c57795107f08cf70c6ec7774"},
+ {file = "pydantic-1.10.4.tar.gz", hash = "sha256:b9a3859f24eb4e097502a3be1fb4b2abb79b6103dd9e2e0edb70613a4459a648"},
+]
+
+[package.dependencies]
+typing-extensions = ">=4.2.0"
+
+[package.extras]
+dotenv = ["python-dotenv (>=0.10.4)"]
+email = ["email-validator (>=1.0.3)"]
+
+[[package]]
+name = "pymatgen"
+version = "2022.11.7"
+description = "Python Materials Genomics is a robust materials analysis code that defines core object representations for structures and molecules with support for many electronic structure codes. It is currently the core analysis code powering the Materials Project (https://materialsproject.org)."
+category = "main"
+optional = false
+python-versions = ">=3.8"
+files = [
+ {file = "pymatgen-2022.11.7-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:107544fd1fe48aa97d932b7897b46f0db56903c23e44ae971ebf7c3af0b38e99"},
+ {file = "pymatgen-2022.11.7-cp310-cp310-win_amd64.whl", hash = "sha256:8119ad5179002669d201a858b646c886a5775b6b478b64669b24a7c8c2e04404"},
+ {file = "pymatgen-2022.11.7-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:3c104b53850fd6fb9891d5095ca1a2459cf8a2f071bfe03cd687fce67f4a70ff"},
+ {file = "pymatgen-2022.11.7-cp38-cp38-win_amd64.whl", hash = "sha256:345965e4ef56014d1f16827dfd56477807eab0079ed7da608e321ca6d2ebcb45"},
+ {file = "pymatgen-2022.11.7-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:2baaa93dda35e5aa0b4c4521c809a0f5dfd6405293dfcedbd9dc7a7f0a9f007a"},
+ {file = "pymatgen-2022.11.7-cp39-cp39-win_amd64.whl", hash = "sha256:c9ccd4be777a376897ba150826e3f0b9ac9ebf369fb9478cb79a35e042817c25"},
+ {file = "pymatgen-2022.11.7.tar.gz", hash = "sha256:e30ed85c480df491b576b08cc5a2900027da3896351fbf9045bdeddf31aab651"},
+]
+
+[package.dependencies]
+matplotlib = ">=1.5"
+monty = ">=3.0.2"
+mp-api = ">=0.27.3"
+networkx = ">=2.2"
+numpy = ">=1.20.1"
+palettable = ">=3.1.1"
+pandas = "*"
+plotly = ">=4.5.0"
+pybtex = "*"
+requests = "*"
+"ruamel.yaml" = ">=0.17.0"
+scipy = ">=1.5.0"
+spglib = ">=2.0.2"
+sympy = "*"
+tabulate = "*"
+tqdm = "*"
+uncertainties = ">=3.1.4"
+
+[package.extras]
+abinit = ["netcdf4"]
+ase = ["ase (>=3.3)"]
+dev = ["black", "coverage", "coveralls", "doc2dash", "flake8", "mypy (==0.982)", "pre-commit", "pydocstyle", "pylint", "pytest", "pytest-cov", "pytest-split", "sphinx", "sphinx-rtd-theme"]
+optional = ["BoltzTraP2 (>=22.3.2)", "ase (>=3.22.1)", "chemview (>=0.6)", "f90nml (>=1.1.2)", "fdint (>=2.0.2)", "galore (>=0.6.1)", "h5py (==3.6.0)", "jarvis-tools (>=2020.7.14)", "netCDF4 (>=1.5.8)", "phonopy (>=2.4.2)", "seekpath (>=1.9.4)"]
+relaxation = ["m3gnet"]
+vis = ["vtk (>=6.0.0)"]
+
+[[package]]
+name = "pyparsing"
+version = "3.0.9"
+description = "pyparsing module - Classes and methods to define and execute parsing grammars"
+category = "main"
+optional = false
+python-versions = ">=3.6.8"
+files = [
+ {file = "pyparsing-3.0.9-py3-none-any.whl", hash = "sha256:5026bae9a10eeaefb61dab2f09052b9f4307d44aee4eda64b309723d8d206bbc"},
+ {file = "pyparsing-3.0.9.tar.gz", hash = "sha256:2b020ecf7d21b687f219b71ecad3631f644a47f01403fa1d1036b0c6416d70fb"},
+]
+
+[package.extras]
+diagrams = ["jinja2", "railroad-diagrams"]
+
+[[package]]
+name = "python-dateutil"
+version = "2.8.2"
+description = "Extensions to the standard Python datetime module"
+category = "main"
+optional = false
+python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7"
+files = [
+ {file = "python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"},
+ {file = "python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"},
+]
+
+[package.dependencies]
+six = ">=1.5"
+
+[[package]]
+name = "pytz"
+version = "2022.7"
+description = "World timezone definitions, modern and historical"
+category = "main"
+optional = false
+python-versions = "*"
+files = [
+ {file = "pytz-2022.7-py2.py3-none-any.whl", hash = "sha256:93007def75ae22f7cd991c84e02d434876818661f8df9ad5df9e950ff4e52cfd"},
+ {file = "pytz-2022.7.tar.gz", hash = "sha256:7ccfae7b4b2c067464a6733c6261673fdb8fd1be905460396b97a073e9fa683a"},
+]
+
+[[package]]
+name = "pyyaml"
+version = "6.0"
+description = "YAML parser and emitter for Python"
+category = "main"
+optional = false
+python-versions = ">=3.6"
+files = [
+ {file = "PyYAML-6.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d4db7c7aef085872ef65a8fd7d6d09a14ae91f691dec3e87ee5ee0539d516f53"},
+ {file = "PyYAML-6.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9df7ed3b3d2e0ecfe09e14741b857df43adb5a3ddadc919a2d94fbdf78fea53c"},
+ {file = "PyYAML-6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77f396e6ef4c73fdc33a9157446466f1cff553d979bd00ecb64385760c6babdc"},
+ {file = "PyYAML-6.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a80a78046a72361de73f8f395f1f1e49f956c6be882eed58505a15f3e430962b"},
+ {file = "PyYAML-6.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:f84fbc98b019fef2ee9a1cb3ce93e3187a6df0b2538a651bfb890254ba9f90b5"},
+ {file = "PyYAML-6.0-cp310-cp310-win32.whl", hash = "sha256:2cd5df3de48857ed0544b34e2d40e9fac445930039f3cfe4bcc592a1f836d513"},
+ {file = "PyYAML-6.0-cp310-cp310-win_amd64.whl", hash = "sha256:daf496c58a8c52083df09b80c860005194014c3698698d1a57cbcfa182142a3a"},
+ {file = "PyYAML-6.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d4b0ba9512519522b118090257be113b9468d804b19d63c71dbcf4a48fa32358"},
+ {file = "PyYAML-6.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:81957921f441d50af23654aa6c5e5eaf9b06aba7f0a19c18a538dc7ef291c5a1"},
+ {file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:afa17f5bc4d1b10afd4466fd3a44dc0e245382deca5b3c353d8b757f9e3ecb8d"},
+ {file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dbad0e9d368bb989f4515da330b88a057617d16b6a8245084f1b05400f24609f"},
+ {file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:432557aa2c09802be39460360ddffd48156e30721f5e8d917f01d31694216782"},
+ {file = "PyYAML-6.0-cp311-cp311-win32.whl", hash = "sha256:bfaef573a63ba8923503d27530362590ff4f576c626d86a9fed95822a8255fd7"},
+ {file = "PyYAML-6.0-cp311-cp311-win_amd64.whl", hash = "sha256:01b45c0191e6d66c470b6cf1b9531a771a83c1c4208272ead47a3ae4f2f603bf"},
+ {file = "PyYAML-6.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:897b80890765f037df3403d22bab41627ca8811ae55e9a722fd0392850ec4d86"},
+ {file = "PyYAML-6.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50602afada6d6cbfad699b0c7bb50d5ccffa7e46a3d738092afddc1f9758427f"},
+ {file = "PyYAML-6.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:48c346915c114f5fdb3ead70312bd042a953a8ce5c7106d5bfb1a5254e47da92"},
+ {file = "PyYAML-6.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:98c4d36e99714e55cfbaaee6dd5badbc9a1ec339ebfc3b1f52e293aee6bb71a4"},
+ {file = "PyYAML-6.0-cp36-cp36m-win32.whl", hash = "sha256:0283c35a6a9fbf047493e3a0ce8d79ef5030852c51e9d911a27badfde0605293"},
+ {file = "PyYAML-6.0-cp36-cp36m-win_amd64.whl", hash = "sha256:07751360502caac1c067a8132d150cf3d61339af5691fe9e87803040dbc5db57"},
+ {file = "PyYAML-6.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:819b3830a1543db06c4d4b865e70ded25be52a2e0631ccd2f6a47a2822f2fd7c"},
+ {file = "PyYAML-6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:473f9edb243cb1935ab5a084eb238d842fb8f404ed2193a915d1784b5a6b5fc0"},
+ {file = "PyYAML-6.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0ce82d761c532fe4ec3f87fc45688bdd3a4c1dc5e0b4a19814b9009a29baefd4"},
+ {file = "PyYAML-6.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:231710d57adfd809ef5d34183b8ed1eeae3f76459c18fb4a0b373ad56bedcdd9"},
+ {file = "PyYAML-6.0-cp37-cp37m-win32.whl", hash = "sha256:c5687b8d43cf58545ade1fe3e055f70eac7a5a1a0bf42824308d868289a95737"},
+ {file = "PyYAML-6.0-cp37-cp37m-win_amd64.whl", hash = "sha256:d15a181d1ecd0d4270dc32edb46f7cb7733c7c508857278d3d378d14d606db2d"},
+ {file = "PyYAML-6.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0b4624f379dab24d3725ffde76559cff63d9ec94e1736b556dacdfebe5ab6d4b"},
+ {file = "PyYAML-6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:213c60cd50106436cc818accf5baa1aba61c0189ff610f64f4a3e8c6726218ba"},
+ {file = "PyYAML-6.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9fa600030013c4de8165339db93d182b9431076eb98eb40ee068700c9c813e34"},
+ {file = "PyYAML-6.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:277a0ef2981ca40581a47093e9e2d13b3f1fbbeffae064c1d21bfceba2030287"},
+ {file = "PyYAML-6.0-cp38-cp38-win32.whl", hash = "sha256:d4eccecf9adf6fbcc6861a38015c2a64f38b9d94838ac1810a9023a0609e1b78"},
+ {file = "PyYAML-6.0-cp38-cp38-win_amd64.whl", hash = "sha256:1e4747bc279b4f613a09eb64bba2ba602d8a6664c6ce6396a4d0cd413a50ce07"},
+ {file = "PyYAML-6.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:055d937d65826939cb044fc8c9b08889e8c743fdc6a32b33e2390f66013e449b"},
+ {file = "PyYAML-6.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e61ceaab6f49fb8bdfaa0f92c4b57bcfbea54c09277b1b4f7ac376bfb7a7c174"},
+ {file = "PyYAML-6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d67d839ede4ed1b28a4e8909735fc992a923cdb84e618544973d7dfc71540803"},
+ {file = "PyYAML-6.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cba8c411ef271aa037d7357a2bc8f9ee8b58b9965831d9e51baf703280dc73d3"},
+ {file = "PyYAML-6.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:40527857252b61eacd1d9af500c3337ba8deb8fc298940291486c465c8b46ec0"},
+ {file = "PyYAML-6.0-cp39-cp39-win32.whl", hash = "sha256:b5b9eccad747aabaaffbc6064800670f0c297e52c12754eb1d976c57e4f74dcb"},
+ {file = "PyYAML-6.0-cp39-cp39-win_amd64.whl", hash = "sha256:b3d267842bf12586ba6c734f89d1f5b871df0273157918b0ccefa29deb05c21c"},
+ {file = "PyYAML-6.0.tar.gz", hash = "sha256:68fb519c14306fec9720a2a5b45bc9f0c8d1b9c72adf45c37baedfcd949c35a2"},
+]
+
+[[package]]
+name = "requests"
+version = "2.28.1"
+description = "Python HTTP for Humans."
+category = "main"
+optional = false
+python-versions = ">=3.7, <4"
+files = [
+ {file = "requests-2.28.1-py3-none-any.whl", hash = "sha256:8fefa2a1a1365bf5520aac41836fbee479da67864514bdb821f31ce07ce65349"},
+ {file = "requests-2.28.1.tar.gz", hash = "sha256:7c5599b102feddaa661c826c56ab4fee28bfd17f5abca1ebbe3e7f19d7c97983"},
+]
+
+[package.dependencies]
+certifi = ">=2017.4.17"
+charset-normalizer = ">=2,<3"
+idna = ">=2.5,<4"
+urllib3 = ">=1.21.1,<1.27"
+
+[package.extras]
+socks = ["PySocks (>=1.5.6,!=1.5.7)"]
+use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"]
+
+[[package]]
+name = "ruamel-yaml"
+version = "0.17.21"
+description = "ruamel.yaml is a YAML parser/emitter that supports roundtrip preservation of comments, seq/map flow style, and map key order"
+category = "main"
+optional = false
+python-versions = ">=3"
+files = [
+ {file = "ruamel.yaml-0.17.21-py3-none-any.whl", hash = "sha256:742b35d3d665023981bd6d16b3d24248ce5df75fdb4e2924e93a05c1f8b61ca7"},
+ {file = "ruamel.yaml-0.17.21.tar.gz", hash = "sha256:8b7ce697a2f212752a35c1ac414471dc16c424c9573be4926b56ff3f5d23b7af"},
+]
+
+[package.dependencies]
+"ruamel.yaml.clib" = {version = ">=0.2.6", markers = "platform_python_implementation == \"CPython\" and python_version < \"3.11\""}
+
+[package.extras]
+docs = ["ryd"]
+jinja2 = ["ruamel.yaml.jinja2 (>=0.2)"]
+
+[[package]]
+name = "ruamel-yaml-clib"
+version = "0.2.7"
+description = "C version of reader, parser and emitter for ruamel.yaml derived from libyaml"
+category = "main"
+optional = false
+python-versions = ">=3.5"
+files = [
+ {file = "ruamel.yaml.clib-0.2.7-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d5859983f26d8cd7bb5c287ef452e8aacc86501487634573d260968f753e1d71"},
+ {file = "ruamel.yaml.clib-0.2.7-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:debc87a9516b237d0466a711b18b6ebeb17ba9f391eb7f91c649c5c4ec5006c7"},
+ {file = "ruamel.yaml.clib-0.2.7-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:df5828871e6648db72d1c19b4bd24819b80a755c4541d3409f0f7acd0f335c80"},
+ {file = "ruamel.yaml.clib-0.2.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:efa08d63ef03d079dcae1dfe334f6c8847ba8b645d08df286358b1f5293d24ab"},
+ {file = "ruamel.yaml.clib-0.2.7-cp310-cp310-win32.whl", hash = "sha256:763d65baa3b952479c4e972669f679fe490eee058d5aa85da483ebae2009d231"},
+ {file = "ruamel.yaml.clib-0.2.7-cp310-cp310-win_amd64.whl", hash = "sha256:d000f258cf42fec2b1bbf2863c61d7b8918d31ffee905da62dede869254d3b8a"},
+ {file = "ruamel.yaml.clib-0.2.7-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:045e0626baf1c52e5527bd5db361bc83180faaba2ff586e763d3d5982a876a9e"},
+ {file = "ruamel.yaml.clib-0.2.7-cp311-cp311-macosx_12_6_arm64.whl", hash = "sha256:721bc4ba4525f53f6a611ec0967bdcee61b31df5a56801281027a3a6d1c2daf5"},
+ {file = "ruamel.yaml.clib-0.2.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:41d0f1fa4c6830176eef5b276af04c89320ea616655d01327d5ce65e50575c94"},
+ {file = "ruamel.yaml.clib-0.2.7-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:4b3a93bb9bc662fc1f99c5c3ea8e623d8b23ad22f861eb6fce9377ac07ad6072"},
+ {file = "ruamel.yaml.clib-0.2.7-cp36-cp36m-macosx_12_0_arm64.whl", hash = "sha256:a234a20ae07e8469da311e182e70ef6b199d0fbeb6c6cc2901204dd87fb867e8"},
+ {file = "ruamel.yaml.clib-0.2.7-cp36-cp36m-manylinux2014_aarch64.whl", hash = "sha256:15910ef4f3e537eea7fe45f8a5d19997479940d9196f357152a09031c5be59f3"},
+ {file = "ruamel.yaml.clib-0.2.7-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:370445fd795706fd291ab00c9df38a0caed0f17a6fb46b0f607668ecb16ce763"},
+ {file = "ruamel.yaml.clib-0.2.7-cp36-cp36m-win32.whl", hash = "sha256:ecdf1a604009bd35c674b9225a8fa609e0282d9b896c03dd441a91e5f53b534e"},
+ {file = "ruamel.yaml.clib-0.2.7-cp36-cp36m-win_amd64.whl", hash = "sha256:f34019dced51047d6f70cb9383b2ae2853b7fc4dce65129a5acd49f4f9256646"},
+ {file = "ruamel.yaml.clib-0.2.7-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:2aa261c29a5545adfef9296b7e33941f46aa5bbd21164228e833412af4c9c75f"},
+ {file = "ruamel.yaml.clib-0.2.7-cp37-cp37m-macosx_12_0_arm64.whl", hash = "sha256:f01da5790e95815eb5a8a138508c01c758e5f5bc0ce4286c4f7028b8dd7ac3d0"},
+ {file = "ruamel.yaml.clib-0.2.7-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:40d030e2329ce5286d6b231b8726959ebbe0404c92f0a578c0e2482182e38282"},
+ {file = "ruamel.yaml.clib-0.2.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:c3ca1fbba4ae962521e5eb66d72998b51f0f4d0f608d3c0347a48e1af262efa7"},
+ {file = "ruamel.yaml.clib-0.2.7-cp37-cp37m-win32.whl", hash = "sha256:7bdb4c06b063f6fd55e472e201317a3bb6cdeeee5d5a38512ea5c01e1acbdd93"},
+ {file = "ruamel.yaml.clib-0.2.7-cp37-cp37m-win_amd64.whl", hash = "sha256:be2a7ad8fd8f7442b24323d24ba0b56c51219513cfa45b9ada3b87b76c374d4b"},
+ {file = "ruamel.yaml.clib-0.2.7-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:91a789b4aa0097b78c93e3dc4b40040ba55bef518f84a40d4442f713b4094acb"},
+ {file = "ruamel.yaml.clib-0.2.7-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:99e77daab5d13a48a4054803d052ff40780278240a902b880dd37a51ba01a307"},
+ {file = "ruamel.yaml.clib-0.2.7-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:3243f48ecd450eddadc2d11b5feb08aca941b5cd98c9b1db14b2fd128be8c697"},
+ {file = "ruamel.yaml.clib-0.2.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:8831a2cedcd0f0927f788c5bdf6567d9dc9cc235646a434986a852af1cb54b4b"},
+ {file = "ruamel.yaml.clib-0.2.7-cp38-cp38-win32.whl", hash = "sha256:3110a99e0f94a4a3470ff67fc20d3f96c25b13d24c6980ff841e82bafe827cac"},
+ {file = "ruamel.yaml.clib-0.2.7-cp38-cp38-win_amd64.whl", hash = "sha256:92460ce908546ab69770b2e576e4f99fbb4ce6ab4b245345a3869a0a0410488f"},
+ {file = "ruamel.yaml.clib-0.2.7-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5bc0667c1eb8f83a3752b71b9c4ba55ef7c7058ae57022dd9b29065186a113d9"},
+ {file = "ruamel.yaml.clib-0.2.7-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:4a4d8d417868d68b979076a9be6a38c676eca060785abaa6709c7b31593c35d1"},
+ {file = "ruamel.yaml.clib-0.2.7-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:bf9a6bc4a0221538b1a7de3ed7bca4c93c02346853f44e1cd764be0023cd3640"},
+ {file = "ruamel.yaml.clib-0.2.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl", hash = "sha256:a7b301ff08055d73223058b5c46c55638917f04d21577c95e00e0c4d79201a6b"},
+ {file = "ruamel.yaml.clib-0.2.7-cp39-cp39-win32.whl", hash = "sha256:d5e51e2901ec2366b79f16c2299a03e74ba4531ddcfacc1416639c557aef0ad8"},
+ {file = "ruamel.yaml.clib-0.2.7-cp39-cp39-win_amd64.whl", hash = "sha256:184faeaec61dbaa3cace407cffc5819f7b977e75360e8d5ca19461cd851a5fc5"},
+ {file = "ruamel.yaml.clib-0.2.7.tar.gz", hash = "sha256:1f08fd5a2bea9c4180db71678e850b995d2a5f4537be0e94557668cf0f5f9497"},
+]
+
+[[package]]
+name = "scipy"
+version = "1.9.3"
+description = "Fundamental algorithms for scientific computing in Python"
+category = "main"
+optional = false
+python-versions = ">=3.8"
+files = [
+ {file = "scipy-1.9.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1884b66a54887e21addf9c16fb588720a8309a57b2e258ae1c7986d4444d3bc0"},
+ {file = "scipy-1.9.3-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:83b89e9586c62e787f5012e8475fbb12185bafb996a03257e9675cd73d3736dd"},
+ {file = "scipy-1.9.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a72d885fa44247f92743fc20732ae55564ff2a519e8302fb7e18717c5355a8b"},
+ {file = "scipy-1.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d01e1dd7b15bd2449c8bfc6b7cc67d630700ed655654f0dfcf121600bad205c9"},
+ {file = "scipy-1.9.3-cp310-cp310-win_amd64.whl", hash = "sha256:68239b6aa6f9c593da8be1509a05cb7f9efe98b80f43a5861cd24c7557e98523"},
+ {file = "scipy-1.9.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b41bc822679ad1c9a5f023bc93f6d0543129ca0f37c1ce294dd9d386f0a21096"},
+ {file = "scipy-1.9.3-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:90453d2b93ea82a9f434e4e1cba043e779ff67b92f7a0e85d05d286a3625df3c"},
+ {file = "scipy-1.9.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:83c06e62a390a9167da60bedd4575a14c1f58ca9dfde59830fc42e5197283dab"},
+ {file = "scipy-1.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:abaf921531b5aeaafced90157db505e10345e45038c39e5d9b6c7922d68085cb"},
+ {file = "scipy-1.9.3-cp311-cp311-win_amd64.whl", hash = "sha256:06d2e1b4c491dc7d8eacea139a1b0b295f74e1a1a0f704c375028f8320d16e31"},
+ {file = "scipy-1.9.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5a04cd7d0d3eff6ea4719371cbc44df31411862b9646db617c99718ff68d4840"},
+ {file = "scipy-1.9.3-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:545c83ffb518094d8c9d83cce216c0c32f8c04aaf28b92cc8283eda0685162d5"},
+ {file = "scipy-1.9.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d54222d7a3ba6022fdf5773931b5d7c56efe41ede7f7128c7b1637700409108"},
+ {file = "scipy-1.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cff3a5295234037e39500d35316a4c5794739433528310e117b8a9a0c76d20fc"},
+ {file = "scipy-1.9.3-cp38-cp38-win_amd64.whl", hash = "sha256:2318bef588acc7a574f5bfdff9c172d0b1bf2c8143d9582e05f878e580a3781e"},
+ {file = "scipy-1.9.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d644a64e174c16cb4b2e41dfea6af722053e83d066da7343f333a54dae9bc31c"},
+ {file = "scipy-1.9.3-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:da8245491d73ed0a994ed9c2e380fd058ce2fa8a18da204681f2fe1f57f98f95"},
+ {file = "scipy-1.9.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4db5b30849606a95dcf519763dd3ab6fe9bd91df49eba517359e450a7d80ce2e"},
+ {file = "scipy-1.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c68db6b290cbd4049012990d7fe71a2abd9ffbe82c0056ebe0f01df8be5436b0"},
+ {file = "scipy-1.9.3-cp39-cp39-win_amd64.whl", hash = "sha256:5b88e6d91ad9d59478fafe92a7c757d00c59e3bdc3331be8ada76a4f8d683f58"},
+ {file = "scipy-1.9.3.tar.gz", hash = "sha256:fbc5c05c85c1a02be77b1ff591087c83bc44579c6d2bd9fb798bb64ea5e1a027"},
+]
+
+[package.dependencies]
+numpy = ">=1.18.5,<1.26.0"
+
+[package.extras]
+dev = ["flake8", "mypy", "pycodestyle", "typing_extensions"]
+doc = ["matplotlib (>2)", "numpydoc", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-panels (>=0.5.2)", "sphinx-tabs"]
+test = ["asv", "gmpy2", "mpmath", "pytest", "pytest-cov", "pytest-xdist", "scikit-umfpack", "threadpoolctl"]
+
+[[package]]
+name = "setuptools"
+version = "65.6.3"
+description = "Easily download, build, install, upgrade, and uninstall Python packages"
+category = "main"
+optional = false
+python-versions = ">=3.7"
+files = [
+ {file = "setuptools-65.6.3-py3-none-any.whl", hash = "sha256:57f6f22bde4e042978bcd50176fdb381d7c21a9efa4041202288d3737a0c6a54"},
+ {file = "setuptools-65.6.3.tar.gz", hash = "sha256:a7620757bf984b58deaf32fc8a4577a9bbc0850cf92c20e1ce41c38c19e5fb75"},
+]
+
+[package.extras]
+docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-hoverxref (<2)", "sphinx-inline-tabs", "sphinx-notfound-page (==0.8.3)", "sphinx-reredirects", "sphinxcontrib-towncrier"]
+testing = ["build[virtualenv]", "filelock (>=3.4.0)", "flake8 (<5)", "flake8-2020", "ini2toml[lite] (>=0.9)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pip (>=19.1)", "pip-run (>=8.8)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)", "pytest-perf", "pytest-timeout", "pytest-xdist", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"]
+testing-integration = ["build[virtualenv]", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"]
+
+[[package]]
+name = "six"
+version = "1.16.0"
+description = "Python 2 and 3 compatibility utilities"
+category = "main"
+optional = false
+python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*"
+files = [
+ {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"},
+ {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"},
+]
+
+[[package]]
+name = "spglib"
+version = "2.0.2"
+description = "This is the spglib module."
+category = "main"
+optional = false
+python-versions = "*"
+files = [
+ {file = "spglib-2.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a54dbc8954ffef86895c29416274b23b562dcdd23f8d3d4e61b47b43eabe65aa"},
+ {file = "spglib-2.0.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:da956b941a377c6af450b252ee4ef03040dd2f80b5b77c56d043a5aa3b7e0aca"},
+ {file = "spglib-2.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:791cd3d525a33142f874facb4a0371a744deb6c63cbfa8d8eec2cc2977f54691"},
+ {file = "spglib-2.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2f76c1a5e9699479c847a577e3d7974c676a030048ca4f9ae1b89008ef8b3db7"},
+ {file = "spglib-2.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:19d1a793515711c3196126f4f6da32b1ebb4e6f3c418671692430191b6bb5c75"},
+ {file = "spglib-2.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c6dafee1c21ef378df002802a7a74f92b6a8b54170fe12ebab7f563c8333aae3"},
+ {file = "spglib-2.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b515b688b595590181a763586d9b2bf28e1c5c49dadc90825963ee5c8d63ff69"},
+ {file = "spglib-2.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:57ffbc725c7c22410dbf19f276762d81448843e35bdca55d00480e30dfac61e8"},
+ {file = "spglib-2.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b57e9cbe6ce271a9a2ff403e236e07adaf6c263acbf4dbe007632e189f4108e7"},
+ {file = "spglib-2.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:778306dcccd5c3946357d64435593d80d22758abd94d2d0fc9ec8ee3f75c33a3"},
+ {file = "spglib-2.0.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:4a58ecdd553a9c1603e9bd8124170e97cea0d0ee3be76e5efc2f952a6d463f35"},
+ {file = "spglib-2.0.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:184f4045a6691be5012d75296874e1c7468ebdec3284161724c000efd78558d7"},
+ {file = "spglib-2.0.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:04fd1899d69456259e3667aa4cace8e4e6f3b8a369714ed01f349b4734263df1"},
+ {file = "spglib-2.0.2-cp36-cp36m-win_amd64.whl", hash = "sha256:4d026e4ffd4801b1c0bf6784cb7547032db4a1d0806993060dd95f5caa547c77"},
+ {file = "spglib-2.0.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:98ff97079e331cc707cc1836bfe6c632eb496ffff76fd534bd28faa1221124bd"},
+ {file = "spglib-2.0.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b7440b220cd100c31ee72a33dcb1ee8544ff9b0c0cd69aeee78c081eea654cd3"},
+ {file = "spglib-2.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0352429063f0f174d5b763a4a119ff972fa8f951762719eb930f2db8d462df22"},
+ {file = "spglib-2.0.2-cp37-cp37m-win_amd64.whl", hash = "sha256:64e6731f5921c55521efe53cd9eead26a624124b04547216a8e90bc654638664"},
+ {file = "spglib-2.0.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:d0d17316837825c67723ab2bc6d9cdee0a8252673c7e4e12f8a9264732865bef"},
+ {file = "spglib-2.0.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:50dfd569aa2f8a1393c9784449c1631b73ef3b4035670a905a959656a8af2bc5"},
+ {file = "spglib-2.0.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8916019d201e107d3dc02367ad36f96913e2a42dc9226578e5608b835dec3ad4"},
+ {file = "spglib-2.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:07fa12e0fba754ddf9daa126f82a3b6ed21d4ef5ff7d8f7747e26f55b67c153c"},
+ {file = "spglib-2.0.2-cp38-cp38-win_amd64.whl", hash = "sha256:d2132751f1151f6875b45c9e4b9053fee1d2ef376aa85c8a53f058c71f492a9e"},
+ {file = "spglib-2.0.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c5c23bd8ee8941cb679ba941f8b49cae306fa62a92085d84a451ae86332dc440"},
+ {file = "spglib-2.0.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8b09b79309bd599947d1007ec7598182f193aa291fc50cd5f19b2c73aa643641"},
+ {file = "spglib-2.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d9f63b3f1b00a49d1a409b47e66beb6ea3eaed2131749be8668fce3cb01ec753"},
+ {file = "spglib-2.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b9ab53e531f4083ef61f349fe662f40c1f86bc1e313d76f838a54317acb74865"},
+ {file = "spglib-2.0.2-cp39-cp39-win_amd64.whl", hash = "sha256:9f904e8a1420e3c07a0815f698c464d9a3ea5b5419276ae002f765c5d06f7bee"},
+ {file = "spglib-2.0.2.tar.gz", hash = "sha256:1d081ec22da4ab4fc3198e9445ddad6dec2261c43927831151d93e39422610aa"},
+]
+
+[package.dependencies]
+numpy = "*"
+
+[package.extras]
+doc = ["Sphinx (==4.5.0)", "myst-parser (==0.18.0)", "sphinx-autobuild (==2021.3.14)", "sphinx-book-theme (==0.3.3)", "sphinxcontrib-bibtex (==2.4.2)"]
+
+[[package]]
+name = "sympy"
+version = "1.11.1"
+description = "Computer algebra system (CAS) in Python"
+category = "main"
+optional = false
+python-versions = ">=3.8"
+files = [
+ {file = "sympy-1.11.1-py3-none-any.whl", hash = "sha256:938f984ee2b1e8eae8a07b884c8b7a1146010040fccddc6539c54f401c8f6fcf"},
+ {file = "sympy-1.11.1.tar.gz", hash = "sha256:e32380dce63cb7c0108ed525570092fd45168bdae2faa17e528221ef72e88658"},
+]
+
+[package.dependencies]
+mpmath = ">=0.19"
+
+[[package]]
+name = "tabulate"
+version = "0.9.0"
+description = "Pretty-print tabular data"
+category = "main"
+optional = false
+python-versions = ">=3.7"
+files = [
+ {file = "tabulate-0.9.0-py3-none-any.whl", hash = "sha256:024ca478df22e9340661486f85298cff5f6dcdba14f3813e8830015b9ed1948f"},
+ {file = "tabulate-0.9.0.tar.gz", hash = "sha256:0095b12bf5966de529c0feb1fa08671671b3368eec77d7ef7ab114be2c068b3c"},
+]
+
+[package.extras]
+widechars = ["wcwidth"]
+
+[[package]]
+name = "tenacity"
+version = "8.1.0"
+description = "Retry code until it succeeds"
+category = "main"
+optional = false
+python-versions = ">=3.6"
+files = [
+ {file = "tenacity-8.1.0-py3-none-any.whl", hash = "sha256:35525cd47f82830069f0d6b73f7eb83bc5b73ee2fff0437952cedf98b27653ac"},
+ {file = "tenacity-8.1.0.tar.gz", hash = "sha256:e48c437fdf9340f5666b92cd7990e96bc5fc955e1298baf4a907e3972067a445"},
+]
+
+[package.extras]
+doc = ["reno", "sphinx", "tornado (>=4.5)"]
+
+[[package]]
+name = "torch"
+version = "1.13.1"
+description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration"
+category = "main"
+optional = false
+python-versions = ">=3.7.0"
+files = [
+ {file = "torch-1.13.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:fd12043868a34a8da7d490bf6db66991108b00ffbeecb034228bfcbbd4197143"},
+ {file = "torch-1.13.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:d9fe785d375f2e26a5d5eba5de91f89e6a3be5d11efb497e76705fdf93fa3c2e"},
+ {file = "torch-1.13.1-cp310-cp310-win_amd64.whl", hash = "sha256:98124598cdff4c287dbf50f53fb455f0c1e3a88022b39648102957f3445e9b76"},
+ {file = "torch-1.13.1-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:393a6273c832e047581063fb74335ff50b4c566217019cc6ace318cd79eb0566"},
+ {file = "torch-1.13.1-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:0122806b111b949d21fa1a5f9764d1fd2fcc4a47cb7f8ff914204fd4fc752ed5"},
+ {file = "torch-1.13.1-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:22128502fd8f5b25ac1cd849ecb64a418382ae81dd4ce2b5cebaa09ab15b0d9b"},
+ {file = "torch-1.13.1-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:76024be052b659ac1304ab8475ab03ea0a12124c3e7626282c9c86798ac7bc11"},
+ {file = "torch-1.13.1-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:ea8dda84d796094eb8709df0fcd6b56dc20b58fdd6bc4e8d7109930dafc8e419"},
+ {file = "torch-1.13.1-cp37-cp37m-win_amd64.whl", hash = "sha256:2ee7b81e9c457252bddd7d3da66fb1f619a5d12c24d7074de91c4ddafb832c93"},
+ {file = "torch-1.13.1-cp37-none-macosx_10_9_x86_64.whl", hash = "sha256:0d9b8061048cfb78e675b9d2ea8503bfe30db43d583599ae8626b1263a0c1380"},
+ {file = "torch-1.13.1-cp37-none-macosx_11_0_arm64.whl", hash = "sha256:f402ca80b66e9fbd661ed4287d7553f7f3899d9ab54bf5c67faada1555abde28"},
+ {file = "torch-1.13.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:727dbf00e2cf858052364c0e2a496684b9cb5aa01dc8a8bc8bbb7c54502bdcdd"},
+ {file = "torch-1.13.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:df8434b0695e9ceb8cc70650afc1310d8ba949e6db2a0525ddd9c3b2b181e5fe"},
+ {file = "torch-1.13.1-cp38-cp38-win_amd64.whl", hash = "sha256:5e1e722a41f52a3f26f0c4fcec227e02c6c42f7c094f32e49d4beef7d1e213ea"},
+ {file = "torch-1.13.1-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:33e67eea526e0bbb9151263e65417a9ef2d8fa53cbe628e87310060c9dcfa312"},
+ {file = "torch-1.13.1-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:eeeb204d30fd40af6a2d80879b46a7efbe3cf43cdbeb8838dd4f3d126cc90b2b"},
+ {file = "torch-1.13.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:50ff5e76d70074f6653d191fe4f6a42fdbe0cf942fbe2a3af0b75eaa414ac038"},
+ {file = "torch-1.13.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:2c3581a3fd81eb1f0f22997cddffea569fea53bafa372b2c0471db373b26aafc"},
+ {file = "torch-1.13.1-cp39-cp39-win_amd64.whl", hash = "sha256:0aa46f0ac95050c604bcf9ef71da9f1172e5037fdf2ebe051962d47b123848e7"},
+ {file = "torch-1.13.1-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:6930791efa8757cb6974af73d4996b6b50c592882a324b8fb0589c6a9ba2ddaf"},
+ {file = "torch-1.13.1-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:e0df902a7c7dd6c795698532ee5970ce898672625635d885eade9976e5a04949"},
+]
+
+[package.dependencies]
+nvidia-cublas-cu11 = {version = "11.10.3.66", markers = "platform_system == \"Linux\""}
+nvidia-cuda-nvrtc-cu11 = {version = "11.7.99", markers = "platform_system == \"Linux\""}
+nvidia-cuda-runtime-cu11 = {version = "11.7.99", markers = "platform_system == \"Linux\""}
+nvidia-cudnn-cu11 = {version = "8.5.0.96", markers = "platform_system == \"Linux\""}
+typing-extensions = "*"
+
+[package.extras]
+opt-einsum = ["opt-einsum (>=3.3)"]
+
+[[package]]
+name = "torchvision"
+version = "0.14.1"
+description = "image and video datasets and models for torch deep learning"
+category = "main"
+optional = false
+python-versions = ">=3.7"
+files = [
+ {file = "torchvision-0.14.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:eeb05dd9dd3af5428fee525400759daf8da8e4caec45ddd6908cfb36571f6433"},
+ {file = "torchvision-0.14.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8d0766ea92affa7af248e327dd85f7c9cfdf51a57530b43212d4e1858548e9d7"},
+ {file = "torchvision-0.14.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:6d7b35653113664ea3fdcb71f515cfbf29d2fe393000fd8aaff27a1284de6908"},
+ {file = "torchvision-0.14.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:8a9eb773a2fa8f516e404ac09c059fb14e6882c48fdbb9c946327d2ce5dba6cd"},
+ {file = "torchvision-0.14.1-cp310-cp310-win_amd64.whl", hash = "sha256:13986f0c15377ff23039e1401012ccb6ecf71024ce53def27139e4eac5a57592"},
+ {file = "torchvision-0.14.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:fb7a793fd33ce1abec24b42778419a3fb1e3159d7dfcb274a3ca8fb8cbc408dc"},
+ {file = "torchvision-0.14.1-cp37-cp37m-manylinux1_x86_64.whl", hash = "sha256:89fb0419780ec9a9eb9f7856a0149f6ac9f956b28f44b0c0080c6b5b48044db7"},
+ {file = "torchvision-0.14.1-cp37-cp37m-manylinux2014_aarch64.whl", hash = "sha256:a2d4237d3c9705d7729eb4534e4eb06f1d6be7ff1df391204dfb51586d9b0ecb"},
+ {file = "torchvision-0.14.1-cp37-cp37m-win_amd64.whl", hash = "sha256:92a324712a87957443cc34223274298ae9496853f115c252f8fc02b931f2340e"},
+ {file = "torchvision-0.14.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:68ed03359dcd3da9cd21b8ab94da21158df8a6a0c5bad0bf4a42f0e448d28cb3"},
+ {file = "torchvision-0.14.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:30fcf0e9fe57d4ac4ce6426659a57dce199637ccb6c70be1128670f177692624"},
+ {file = "torchvision-0.14.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:0ed02aefd09bf1114d35f1aa7dce55aa61c2c7e57f9aa02dce362860be654e85"},
+ {file = "torchvision-0.14.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:a541e49fc3c4e90e49e6988428ab047415ed52ea97d0c0bfd147d8bacb8f4df8"},
+ {file = "torchvision-0.14.1-cp38-cp38-win_amd64.whl", hash = "sha256:6099b3191dc2516099a32ae38a5fb349b42e863872a13545ab1a524b6567be60"},
+ {file = "torchvision-0.14.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c5e744f56e5f5b452deb5fc0f3f2ba4d2f00612d14d8da0dbefea8f09ac7690b"},
+ {file = "torchvision-0.14.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:758b20d079e810b4740bd60d1eb16e49da830e3360f9be379eb177ee221fa5d4"},
+ {file = "torchvision-0.14.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:83045507ef8d3c015d4df6be79491375b2f901352cfca6e72b4723e9c4f9a55d"},
+ {file = "torchvision-0.14.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:eaed58cf454323ed9222d4e0dd5fb897064f454b400696e03a5200e65d3a1e76"},
+ {file = "torchvision-0.14.1-cp39-cp39-win_amd64.whl", hash = "sha256:b337e1245ca4353623dd563c03cd8f020c2496a7c5d12bba4d2e381999c766e0"},
+]
+
+[package.dependencies]
+numpy = "*"
+pillow = ">=5.3.0,<8.3.0 || >=8.4.0"
+requests = "*"
+torch = "1.13.1"
+typing-extensions = "*"
+
+[package.extras]
+scipy = ["scipy"]
+
+[[package]]
+name = "tqdm"
+version = "4.64.1"
+description = "Fast, Extensible Progress Meter"
+category = "main"
+optional = false
+python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,>=2.7"
+files = [
+ {file = "tqdm-4.64.1-py2.py3-none-any.whl", hash = "sha256:6fee160d6ffcd1b1c68c65f14c829c22832bc401726335ce92c52d395944a6a1"},
+ {file = "tqdm-4.64.1.tar.gz", hash = "sha256:5f4f682a004951c1b450bc753c710e9280c5746ce6ffedee253ddbcbf54cf1e4"},
+]
+
+[package.dependencies]
+colorama = {version = "*", markers = "platform_system == \"Windows\""}
+
+[package.extras]
+dev = ["py-make (>=0.1.0)", "twine", "wheel"]
+notebook = ["ipywidgets (>=6)"]
+slack = ["slack-sdk"]
+telegram = ["requests"]
+
+[[package]]
+name = "typing-extensions"
+version = "4.4.0"
+description = "Backported and Experimental Type Hints for Python 3.7+"
+category = "main"
+optional = false
+python-versions = ">=3.7"
+files = [
+ {file = "typing_extensions-4.4.0-py3-none-any.whl", hash = "sha256:16fa4864408f655d35ec496218b85f79b3437c829e93320c7c9215ccfd92489e"},
+ {file = "typing_extensions-4.4.0.tar.gz", hash = "sha256:1511434bb92bf8dd198c12b1cc812e800d4181cfcb867674e0f8279cc93087aa"},
+]
+
+[[package]]
+name = "uncertainties"
+version = "3.1.7"
+description = "Transparent calculations with uncertainties on the quantities involved (aka error propagation); fast calculation of derivatives"
+category = "main"
+optional = false
+python-versions = "*"
+files = [
+ {file = "uncertainties-3.1.7-py2.py3-none-any.whl", hash = "sha256:4040ec64d298215531922a68fa1506dc6b1cb86cd7cca8eca848fcfe0f987151"},
+ {file = "uncertainties-3.1.7.tar.gz", hash = "sha256:80111e0839f239c5b233cb4772017b483a0b7a1573a581b92ab7746a35e6faab"},
+]
+
+[package.dependencies]
+future = "*"
+
+[package.extras]
+all = ["nose", "numpy", "sphinx"]
+docs = ["sphinx"]
+optional = ["numpy"]
+tests = ["nose", "numpy"]
+
+[[package]]
+name = "urllib3"
+version = "1.26.13"
+description = "HTTP library with thread-safe connection pooling, file post, and more."
+category = "main"
+optional = false
+python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*"
+files = [
+ {file = "urllib3-1.26.13-py2.py3-none-any.whl", hash = "sha256:47cc05d99aaa09c9e72ed5809b60e7ba354e64b59c9c173ac3018642d8bb41fc"},
+ {file = "urllib3-1.26.13.tar.gz", hash = "sha256:c083dd0dce68dbfbe1129d5271cb90f9447dea7d52097c6e0126120c521ddea8"},
+]
+
+[package.extras]
+brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)", "brotlipy (>=0.6.0)"]
+secure = ["certifi", "cryptography (>=1.3.4)", "idna (>=2.0.0)", "ipaddress", "pyOpenSSL (>=0.14)", "urllib3-secure-extra"]
+socks = ["PySocks (>=1.5.6,!=1.5.7,<2.0)"]
+
+[[package]]
+name = "wheel"
+version = "0.38.4"
+description = "A built-package format for Python"
+category = "main"
+optional = false
+python-versions = ">=3.7"
+files = [
+ {file = "wheel-0.38.4-py3-none-any.whl", hash = "sha256:b60533f3f5d530e971d6737ca6d58681ee434818fab630c83a734bb10c083ce8"},
+ {file = "wheel-0.38.4.tar.gz", hash = "sha256:965f5259b566725405b05e7cf774052044b1ed30119b5d586b2703aafe8719ac"},
+]
+
+[package.extras]
+test = ["pytest (>=3.0.0)"]
+
+[metadata]
+lock-version = "2.0"
+python-versions = "^3.8"
+content-hash = "de06fb1b24d43e992e4909946393a3652ffda2b34025054cb8bdb65a4989a619"
diff --git a/pyproject.toml b/pyproject.toml
new file mode 100644
index 00000000..3a49fbd2
--- /dev/null
+++ b/pyproject.toml
@@ -0,0 +1,17 @@
+[tool.poetry]
+name = "mlbands"
+version = "1.0.1"
+description = "A Python package that implements automatic prediction of electronic band gaps for a set of materials based on training data"
+authors = ["Andrew R. Garcia"]
+readme = "README.md"
+
+[tool.poetry.dependencies]
+python = "^3.8"
+mp-api = "^0.30.5"
+torch = "^1.13.1"
+torchvision = "^0.14.1"
+
+
+[build-system]
+requires = ["poetry-core"]
+build-backend = "poetry.core.masonry.api"
diff --git a/tests/__init__.py b/tests/__init__.py
new file mode 100644
index 00000000..e69de29b
diff --git a/tests/test_module.py b/tests/test_module.py
new file mode 100644
index 00000000..2a32c751
--- /dev/null
+++ b/tests/test_module.py
@@ -0,0 +1,82 @@
+import mlbands
+
+# replace below line with API key [ in string form ] from Materials Project site (https://materialsproject.org/api#api-key)
+SECRET_KEY = ''
+
+def test_materialprops():
+ material = mlbands.Material(SECRET_KEY, 'mp-1103503')
+
+ material.structural()
+ material.XRD()
+ material.thermo()
+ totalmag = material.magnetism().total_magnetization
+ print(totalmag)
+
+def test_visuals():
+ material = mlbands.Material(SECRET_KEY, 'mp-1103502')
+ box = material.to_box(True)
+ material.visual(10,True)
+ box = material.to_box()
+ material.visual()
+
+ material = mlbands.Material(SECRET_KEY, 'mp-1103506')
+ box = material.to_box(True)
+ material.visual(10,True)
+
+def test_loadvisual():
+ xdata = mlbands.load('materials.data')
+ print(xdata)
+
+ mlbands.Material(SECRET_KEY, box_array = xdata[3]).visual()
+ mlbands.Material(SECRET_KEY).visual()
+
+
+def test_bands():
+
+ training = mlbands.Group(SECRET_KEY)
+ training.data_make(range(1,100))
+ # training.data_make(range(1,30),True)
+ training.resize_boxes()
+
+ testing = mlbands.Group(SECRET_KEY)
+ testing.data_make(range(300,350))
+ # testing.data_make(range(300,314),True)
+ testing.resize_boxes()
+
+ machine = mlbands.Machine()
+ machine.learn([training.X,training.Y],[testing.X,testing.Y])
+
+ mlbands.save(training, 'train.data')
+ mlbands.save(testing, 'test.data')
+
+def test_bands_load():
+
+ training = mlbands.load('train.data')
+ trainXY = [training.X,training.Y]
+ testing = mlbands.load('test.data')
+ testXY = [testing.X,testing.Y]
+
+ machine = mlbands.Machine()
+ machine.learn(trainXY,testXY)
+
+def test_dataexpand():
+
+ training = mlbands.Group(SECRET_KEY)
+ traindata = mlbands.load('train.data')
+ training.transfer(traindata)
+
+ testing = mlbands.load('test.data')
+ testdata = mlbands.load('train.data')
+ testing.transfer(testdata)
+
+ print(training.X)
+ print(testing.materials)
+
+
+
+test_materialprops()
+test_visuals()
+test_loadvisual()
+test_dataexpand()
+# test_bands()
+test_bands_load()