|
| 1 | +""" |
| 2 | +This script is meant to be executed from the top level of the repo to make all the paths resolve. It is just here for clean storage. |
| 3 | +""" |
| 4 | + |
| 5 | +import itertools |
| 6 | + |
| 7 | +import librosa |
| 8 | +import matplotlib.pyplot as plt |
| 9 | +import sounddevice |
| 10 | +import soundfile |
| 11 | +import soundfile as sf |
| 12 | +import torch |
| 13 | +from speechbrain.pretrained import EncoderClassifier |
| 14 | +from torchaudio.transforms import Resample |
| 15 | +from tqdm import tqdm |
| 16 | + |
| 17 | +from Modules.Aligner.Aligner import Aligner |
| 18 | +from Modules.ToucanTTS.DurationCalculator import DurationCalculator |
| 19 | +from Modules.ToucanTTS.EnergyCalculator import EnergyCalculator |
| 20 | +from Modules.ToucanTTS.InferenceToucanTTS import ToucanTTS |
| 21 | +from Modules.ToucanTTS.PitchCalculator import Parselmouth |
| 22 | +from Preprocessing.AudioPreprocessor import AudioPreprocessor |
| 23 | +from Preprocessing.TextFrontend import ArticulatoryCombinedTextFrontend |
| 24 | +from Preprocessing.TextFrontend import get_language_id |
| 25 | +from Preprocessing.articulatory_features import get_feature_to_index_lookup |
| 26 | +from Utility.path_to_transcript_dicts import * |
| 27 | +from Utility.storage_config import MODELS_DIR |
| 28 | +from Utility.storage_config import PREPROCESSING_DIR |
| 29 | +from Utility.utils import float2pcm |
| 30 | + |
| 31 | + |
| 32 | +class ToucanTTSInterface(torch.nn.Module): |
| 33 | + |
| 34 | + def __init__(self, |
| 35 | + device="cpu", # device that everything computes on. If a cuda device is available, this can speed things up by an order of magnitude. |
| 36 | + tts_model_path=os.path.join(MODELS_DIR, f"ToucanTTS_Meta", "best.pt"), # path to the ToucanTTS checkpoint or just a shorthand if run standalone |
| 37 | + vocoder_model_path=os.path.join(MODELS_DIR, f"Vocoder", "best.pt"), # path to the Vocoder checkpoint |
| 38 | + language="eng", # initial language of the model, can be changed later with the setter methods |
| 39 | + ): |
| 40 | + super().__init__() |
| 41 | + self.device = device |
| 42 | + if not tts_model_path.endswith(".pt"): |
| 43 | + tts_model_path = os.path.join(MODELS_DIR, f"ToucanTTS_{tts_model_path}", "best.pt") |
| 44 | + |
| 45 | + self.text2phone = ArticulatoryCombinedTextFrontend(language=language, add_silence_to_end=True, device=device) |
| 46 | + checkpoint = torch.load(tts_model_path, map_location='cpu') |
| 47 | + self.phone2mel = ToucanTTS(weights=checkpoint["model"], config=checkpoint["config"]) |
| 48 | + with torch.no_grad(): |
| 49 | + self.phone2mel.store_inverse_all() # this also removes weight norm |
| 50 | + self.phone2mel = self.phone2mel.to(torch.device(device)) |
| 51 | + self.speaker_embedding_func_ecapa = EncoderClassifier.from_hparams(source="speechbrain/spkrec-ecapa-voxceleb", |
| 52 | + run_opts={"device": str(device)}, |
| 53 | + savedir=os.path.join(MODELS_DIR, "Embedding", "speechbrain_speaker_embedding_ecapa")) |
| 54 | + self.default_utterance_embedding = checkpoint["default_emb"].to(self.device) |
| 55 | + self.ap = AudioPreprocessor(input_sr=100, output_sr=16000, device=device) |
| 56 | + self.phone2mel.eval() |
| 57 | + self.lang_id = get_language_id(language) |
| 58 | + self.to(torch.device(device)) |
| 59 | + self.eval() |
| 60 | + |
| 61 | + def set_utterance_embedding(self, path_to_reference_audio="", embedding=None): |
| 62 | + if embedding is not None: |
| 63 | + self.default_utterance_embedding = embedding.squeeze().to(self.device) |
| 64 | + return |
| 65 | + if type(path_to_reference_audio) != list: |
| 66 | + path_to_reference_audio = [path_to_reference_audio] |
| 67 | + if len(path_to_reference_audio) > 0: |
| 68 | + for path in path_to_reference_audio: |
| 69 | + assert os.path.exists(path) |
| 70 | + speaker_embs = list() |
| 71 | + for path in path_to_reference_audio: |
| 72 | + wave, sr = soundfile.read(path) |
| 73 | + if len(wave.shape) > 1: # oh no, we found a stereo audio! |
| 74 | + if len(wave[0]) == 2: # let's figure out whether we need to switch the axes |
| 75 | + wave = wave.transpose() # if yes, we switch the axes. |
| 76 | + wave = librosa.to_mono(wave) |
| 77 | + wave = Resample(orig_freq=sr, new_freq=16000).to(self.device)(torch.tensor(wave, device=self.device, dtype=torch.float32)) |
| 78 | + speaker_embedding = self.speaker_embedding_func_ecapa.encode_batch(wavs=wave.to(self.device).squeeze().unsqueeze(0)).squeeze() |
| 79 | + speaker_embs.append(speaker_embedding) |
| 80 | + self.default_utterance_embedding = sum(speaker_embs) / len(speaker_embs) |
| 81 | + |
| 82 | + def set_language(self, lang_id): |
| 83 | + self.set_phonemizer_language(lang_id=lang_id) |
| 84 | + self.set_accent_language(lang_id=lang_id) |
| 85 | + |
| 86 | + def set_phonemizer_language(self, lang_id): |
| 87 | + self.text2phone = ArticulatoryCombinedTextFrontend(language=lang_id, add_silence_to_end=True, device=self.device) |
| 88 | + |
| 89 | + def set_accent_language(self, lang_id): |
| 90 | + if lang_id in {'ajp', 'ajt', 'lak', 'lno', 'nul', 'pii', 'plj', 'slq', 'smd', 'snb', 'tpw', 'wya', 'zua', 'en-us', 'en-sc', 'fr-be', 'fr-sw', 'pt-br', 'spa-lat', 'vi-ctr', 'vi-so'}: |
| 91 | + if lang_id == 'vi-so' or lang_id == 'vi-ctr': |
| 92 | + lang_id = 'vie' |
| 93 | + elif lang_id == 'spa-lat': |
| 94 | + lang_id = 'spa' |
| 95 | + elif lang_id == 'pt-br': |
| 96 | + lang_id = 'por' |
| 97 | + elif lang_id == 'fr-sw' or lang_id == 'fr-be': |
| 98 | + lang_id = 'fra' |
| 99 | + elif lang_id == 'en-sc' or lang_id == 'en-us': |
| 100 | + lang_id = 'eng' |
| 101 | + else: |
| 102 | + lang_id = 'eng' |
| 103 | + self.lang_id = get_language_id(lang_id).to(self.device) |
| 104 | + |
| 105 | + def forward(self, |
| 106 | + text, |
| 107 | + duration_scaling_factor=1.0, |
| 108 | + pitch_variance_scale=1.0, |
| 109 | + energy_variance_scale=1.0, |
| 110 | + pause_duration_scaling_factor=1.0, |
| 111 | + durations=None, |
| 112 | + pitch=None, |
| 113 | + energy=None, |
| 114 | + input_is_phones=False, |
| 115 | + prosody_creativity=0.1): |
| 116 | + with torch.inference_mode(): |
| 117 | + phones = self.text2phone.string_to_tensor(text, input_phonemes=input_is_phones).to(torch.device(self.device)) |
| 118 | + mel, _, _, _ = self.phone2mel(phones, |
| 119 | + return_duration_pitch_energy=True, |
| 120 | + utterance_embedding=self.default_utterance_embedding, |
| 121 | + durations=durations, |
| 122 | + pitch=pitch, |
| 123 | + energy=energy, |
| 124 | + lang_id=self.lang_id, |
| 125 | + duration_scaling_factor=duration_scaling_factor, |
| 126 | + pitch_variance_scale=pitch_variance_scale, |
| 127 | + energy_variance_scale=energy_variance_scale, |
| 128 | + pause_duration_scaling_factor=pause_duration_scaling_factor, |
| 129 | + prosody_creativity=prosody_creativity) |
| 130 | + return mel |
| 131 | + |
| 132 | + def read_to_file(self, |
| 133 | + text_list, |
| 134 | + file_location, |
| 135 | + duration_scaling_factor=1.0, |
| 136 | + pitch_variance_scale=1.0, |
| 137 | + energy_variance_scale=1.0, |
| 138 | + pause_duration_scaling_factor=1.0, |
| 139 | + dur_list=None, |
| 140 | + pitch_list=None, |
| 141 | + energy_list=None, |
| 142 | + prosody_creativity=0.1): |
| 143 | + if not dur_list: |
| 144 | + dur_list = [] |
| 145 | + if not pitch_list: |
| 146 | + pitch_list = [] |
| 147 | + if not energy_list: |
| 148 | + energy_list = [] |
| 149 | + for (text, durations, pitch, energy) in itertools.zip_longest(text_list, dur_list, pitch_list, energy_list): |
| 150 | + spoken_sentence = self(text, |
| 151 | + durations=durations.to(self.device) if durations is not None else None, |
| 152 | + pitch=pitch.to(self.device) if pitch is not None else None, |
| 153 | + energy=energy.to(self.device) if energy is not None else None, |
| 154 | + duration_scaling_factor=duration_scaling_factor, |
| 155 | + pitch_variance_scale=pitch_variance_scale, |
| 156 | + energy_variance_scale=energy_variance_scale, |
| 157 | + pause_duration_scaling_factor=pause_duration_scaling_factor, |
| 158 | + prosody_creativity=prosody_creativity) |
| 159 | + spoken_sentence = spoken_sentence.cpu() |
| 160 | + |
| 161 | + torch.save(f=file_location, obj=spoken_sentence) |
| 162 | + |
| 163 | + def read_aloud(self, |
| 164 | + text, |
| 165 | + view=False, |
| 166 | + duration_scaling_factor=1.0, |
| 167 | + pitch_variance_scale=1.0, |
| 168 | + energy_variance_scale=1.0, |
| 169 | + blocking=False, |
| 170 | + prosody_creativity=0.1): |
| 171 | + if text.strip() == "": |
| 172 | + return |
| 173 | + wav, sr = self(text, |
| 174 | + view, |
| 175 | + duration_scaling_factor=duration_scaling_factor, |
| 176 | + pitch_variance_scale=pitch_variance_scale, |
| 177 | + energy_variance_scale=energy_variance_scale, |
| 178 | + prosody_creativity=prosody_creativity) |
| 179 | + silence = torch.zeros([sr // 2]) |
| 180 | + wav = torch.cat((silence, torch.tensor(wav), silence), 0).numpy() |
| 181 | + sounddevice.play(float2pcm(wav), samplerate=sr) |
| 182 | + if view: |
| 183 | + plt.show() |
| 184 | + if blocking: |
| 185 | + sounddevice.wait() |
| 186 | + |
| 187 | + |
| 188 | +class UtteranceCloner: |
| 189 | + |
| 190 | + def __init__(self, model_id, device, language="eng"): |
| 191 | + self.tts = ToucanTTSInterface(device=device, tts_model_path=model_id) |
| 192 | + self.ap = AudioPreprocessor(input_sr=100, output_sr=16000, cut_silence=False) |
| 193 | + self.tf = ArticulatoryCombinedTextFrontend(language=language, device=device) |
| 194 | + self.device = device |
| 195 | + acoustic_checkpoint_path = os.path.join(PREPROCESSING_DIR, "libri_all_clean", "Aligner", "aligner.pt") |
| 196 | + self.aligner_weights = torch.load(acoustic_checkpoint_path, map_location=device)["asr_model"] |
| 197 | + self.acoustic_model = Aligner() |
| 198 | + self.acoustic_model = self.acoustic_model.to(self.device) |
| 199 | + self.acoustic_model.load_state_dict(self.aligner_weights) |
| 200 | + self.acoustic_model.eval() |
| 201 | + self.parsel = Parselmouth(reduction_factor=1, fs=16000) |
| 202 | + self.energy_calc = EnergyCalculator(reduction_factor=1, fs=16000) |
| 203 | + self.dc = DurationCalculator(reduction_factor=1) |
| 204 | + |
| 205 | + def extract_prosody(self, transcript, ref_audio_path, lang="eng", on_line_fine_tune=False): |
| 206 | + wave, sr = sf.read(ref_audio_path) |
| 207 | + if self.tf.language != lang: |
| 208 | + self.tf = ArticulatoryCombinedTextFrontend(language=lang, device=self.device) |
| 209 | + if self.ap.input_sr != sr: |
| 210 | + self.ap = AudioPreprocessor(input_sr=sr, output_sr=16000, cut_silence=False) |
| 211 | + try: |
| 212 | + norm_wave = self.ap.normalize_audio(audio=wave) |
| 213 | + except ValueError: |
| 214 | + print('Something went wrong, the reference wave might be too short.') |
| 215 | + raise RuntimeError |
| 216 | + |
| 217 | + norm_wave_length = torch.LongTensor([len(norm_wave)]) |
| 218 | + text = self.tf.string_to_tensor(transcript, handle_missing=False).squeeze(0) |
| 219 | + features = self.ap.audio_to_mel_spec_tensor(audio=norm_wave, explicit_sampling_rate=16000).transpose(0, 1) |
| 220 | + feature_length = torch.LongTensor([len(features)]).numpy() |
| 221 | + |
| 222 | + text_without_word_boundaries = list() |
| 223 | + indexes_of_word_boundaries = list() |
| 224 | + for phoneme_index, vector in enumerate(text): |
| 225 | + if vector[get_feature_to_index_lookup()["word-boundary"]] == 0: |
| 226 | + text_without_word_boundaries.append(vector.numpy().tolist()) |
| 227 | + else: |
| 228 | + indexes_of_word_boundaries.append(phoneme_index) |
| 229 | + matrix_without_word_boundaries = torch.Tensor(text_without_word_boundaries) |
| 230 | + |
| 231 | + alignment_path = self.acoustic_model.inference(features=features.to(self.device), |
| 232 | + tokens=matrix_without_word_boundaries.to(self.device), |
| 233 | + return_ctc=False) |
| 234 | + |
| 235 | + duration = self.dc(torch.LongTensor(alignment_path), vis=None).cpu() |
| 236 | + |
| 237 | + for index_of_word_boundary in indexes_of_word_boundaries: |
| 238 | + duration = torch.cat([duration[:index_of_word_boundary], |
| 239 | + torch.LongTensor([0]), # insert a 0 duration wherever there is a word boundary |
| 240 | + duration[index_of_word_boundary:]]) |
| 241 | + |
| 242 | + energy = self.energy_calc(input_waves=norm_wave.unsqueeze(0), |
| 243 | + input_waves_lengths=norm_wave_length, |
| 244 | + feats_lengths=feature_length, |
| 245 | + text=text, |
| 246 | + durations=duration.unsqueeze(0), |
| 247 | + durations_lengths=torch.LongTensor([len(duration)]))[0].squeeze(0).cpu() |
| 248 | + pitch = self.parsel(input_waves=norm_wave.unsqueeze(0), |
| 249 | + input_waves_lengths=norm_wave_length, |
| 250 | + feats_lengths=feature_length, |
| 251 | + text=text, |
| 252 | + durations=duration.unsqueeze(0), |
| 253 | + durations_lengths=torch.LongTensor([len(duration)]))[0].squeeze(0).cpu() |
| 254 | + return duration, pitch, energy |
| 255 | + |
| 256 | + def clone_utterance(self, |
| 257 | + path_to_reference_audio_for_intonation, |
| 258 | + path_to_reference_audio_for_voice, |
| 259 | + transcription_of_intonation_reference, |
| 260 | + filename_of_result=None, |
| 261 | + lang="eng"): |
| 262 | + self.tts.set_utterance_embedding(path_to_reference_audio=path_to_reference_audio_for_voice) |
| 263 | + duration, pitch, energy = self.extract_prosody(transcription_of_intonation_reference, |
| 264 | + path_to_reference_audio_for_intonation, |
| 265 | + lang=lang) |
| 266 | + self.tts.set_language(lang) |
| 267 | + cloned_speech = self.tts(transcription_of_intonation_reference, view=False, durations=duration, pitch=pitch.transpose(0, 1), energy=energy.transpose(0, 1)) |
| 268 | + if filename_of_result is not None: |
| 269 | + torch.save(f=filename_of_result, obj=cloned_speech) |
| 270 | + |
| 271 | + |
| 272 | +class Reader: |
| 273 | + |
| 274 | + def __init__(self, language, device="cuda", model_id="Meta"): |
| 275 | + self.tts = UtteranceCloner(device=device, model_id=model_id, language=language) |
| 276 | + self.language = language |
| 277 | + |
| 278 | + def read_texts(self, sentence, filename, speaker_reference): |
| 279 | + self.tts.clone_utterance(speaker_reference, |
| 280 | + speaker_reference, |
| 281 | + sentence, |
| 282 | + filename_of_result=filename, |
| 283 | + lang=self.language) |
| 284 | + |
| 285 | + |
| 286 | +if __name__ == '__main__': |
| 287 | + |
| 288 | + os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" |
| 289 | + os.environ["CUDA_VISIBLE_DEVICES"] = "5" |
| 290 | + |
| 291 | + all_dict = build_path_to_transcript_libritts_all_clean() |
| 292 | + |
| 293 | + reader = Reader(language="eng") |
| 294 | + for path in tqdm(all_dict): |
| 295 | + filename = path.replace(".wav", "_synthetic_spec.pt") |
| 296 | + reader.read_texts(sentence=all_dict[path], filename=filename, speaker_reference=path) |
0 commit comments