|
| 1 | +# Copyright 2015 The TensorFlow Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | +# ============================================================================== |
| 15 | + |
| 16 | +"""Tests for tensorflow.ops.tf.MSBatchMatMulGrad""" |
| 17 | +from __future__ import absolute_import |
| 18 | +from __future__ import division |
| 19 | +from __future__ import print_function |
| 20 | + |
| 21 | + |
| 22 | +import numpy as np |
| 23 | +import os |
| 24 | +import shutil |
| 25 | +# os.environ['TF_CPP_MIN_VLOG_LEVEL'] = '2' |
| 26 | + |
| 27 | +from tensorflow.contrib import layers |
| 28 | +from tensorflow.core.protobuf import config_pb2 |
| 29 | +from tensorflow.python.client import session |
| 30 | +from tensorflow.python.framework import constant_op |
| 31 | +from tensorflow.python.framework import dtypes |
| 32 | +from tensorflow.python.framework import ops |
| 33 | +from tensorflow.python.framework import random_seed |
| 34 | +from tensorflow.python.ops import array_ops |
| 35 | +from tensorflow.python.ops import init_ops |
| 36 | +from tensorflow.python.ops import math_ops |
| 37 | +from tensorflow.python.ops import nn_impl |
| 38 | +from tensorflow.python.ops import nn_ops |
| 39 | +from tensorflow.python.ops import variables |
| 40 | +from tensorflow.python.ops import variable_scope |
| 41 | +from tensorflow.python.platform import test |
| 42 | +from tensorflow.python.summary import summary |
| 43 | +from tensorflow.python.training import adagrad |
| 44 | +from tensorflow.python.ops import array_ops |
| 45 | + |
| 46 | + |
| 47 | + |
| 48 | +# run without auto-replacement of fused ops |
| 49 | +def runNonFuse(): |
| 50 | + g1 = ops.Graph() |
| 51 | + with g1.as_default(): |
| 52 | + random_seed.set_random_seed(0) |
| 53 | + |
| 54 | + n_num = 1024 |
| 55 | + q_num = 50 |
| 56 | + k_num = 50 |
| 57 | + c_num = 128 # c_num % split_num == 0 |
| 58 | + split_num = 8 |
| 59 | + |
| 60 | + data_float32_q = array_ops.placeholder( |
| 61 | + dtypes.float32, shape=(None, q_num, c_num)) |
| 62 | + data_float32_k = array_ops.placeholder( |
| 63 | + dtypes.float32, shape=(None, k_num, c_num)) |
| 64 | + |
| 65 | + x_float32 = data_float32_q |
| 66 | + y_float32 = data_float32_k |
| 67 | + m = variable_scope.get_variable( |
| 68 | + "m_non_fuse", [split_num, n_num, q_num, k_num], |
| 69 | + dtype=dtypes.int32, |
| 70 | + initializer=init_ops.random_uniform_initializer(0, 2)) |
| 71 | + m_bool = math_ops.cast(m, dtype=dtypes.bool) |
| 72 | + m_bool = array_ops.reshape(m_bool, [-1, q_num, k_num]) |
| 73 | + p_float32 = constant_op.constant( |
| 74 | + 0, shape=[split_num*n_num, q_num, k_num], |
| 75 | + dtype=dtypes.float32) |
| 76 | + |
| 77 | + with ops.name_scope('NonFuseForward') as scope: |
| 78 | + with ops.device("/cpu:0"): |
| 79 | + |
| 80 | + x_float32 = layers.fully_connected( |
| 81 | + x_float32, c_num, |
| 82 | + activation_fn=nn_ops.leaky_relu, scope="X") |
| 83 | + |
| 84 | + y_float32 = layers.fully_connected( |
| 85 | + y_float32, c_num, |
| 86 | + activation_fn=nn_ops.leaky_relu, scope="Y") |
| 87 | + |
| 88 | + xs_float32 = array_ops.concat( |
| 89 | + array_ops.split(x_float32, split_num, axis=2), axis=0) |
| 90 | + ys_float32 = array_ops.concat( |
| 91 | + array_ops.split(y_float32, split_num, axis=2), axis=0) |
| 92 | + output_non_fuse_float32 = math_ops.matmul( |
| 93 | + xs_float32, ys_float32, |
| 94 | + transpose_a=False, transpose_b=True) |
| 95 | + |
| 96 | + zero_tensor = array_ops.zeros_like(array_ops.identity(output_non_fuse_float32)) |
| 97 | + output_non_fuse_float32 = array_ops.where( |
| 98 | + m_bool, output_non_fuse_float32, zero_tensor) |
| 99 | + zero_tensor2 =array_ops.zeros_like(zero_tensor) |
| 100 | + |
| 101 | + layer1_non_fuse_float32 = layers.fully_connected( |
| 102 | + output_non_fuse_float32, 40, |
| 103 | + activation_fn=nn_ops.leaky_relu) |
| 104 | + layer2_non_fuse_float32 = layers.fully_connected( |
| 105 | + layer1_non_fuse_float32, 20, |
| 106 | + activation_fn=nn_ops.leaky_relu) |
| 107 | + layer2_non_fuse_float32 = array_ops.reshape( |
| 108 | + layer2_non_fuse_float32, [n_num, -1]) |
| 109 | + layer3_non_fuse_float32 = layers.fully_connected( |
| 110 | + layer2_non_fuse_float32, 1, |
| 111 | + activation_fn=nn_ops.leaky_relu) |
| 112 | + labels_non_fuse_float32 = constant_op.constant( |
| 113 | + 1, shape=[n_num, 1], dtype=dtypes.float32) |
| 114 | + loss_op_non_fuse_float32 = math_ops.reduce_mean( |
| 115 | + nn_impl.sigmoid_cross_entropy_with_logits( |
| 116 | + logits=layer3_non_fuse_float32, |
| 117 | + labels=labels_non_fuse_float32)) |
| 118 | + |
| 119 | + with ops.name_scope('NonFuseBackward') as scope: |
| 120 | + with ops.device("/cpu:0"): |
| 121 | + train_op_non_fuse_float32 = adagrad.AdagradOptimizer( |
| 122 | + learning_rate=0.0001, |
| 123 | + initial_accumulator_value=0.1).minimize( |
| 124 | + loss_op_non_fuse_float32) |
| 125 | + |
| 126 | + init_global = variables.global_variables_initializer() |
| 127 | + init_local = variables.local_variables_initializer() |
| 128 | + |
| 129 | + # trigger fusion op or not |
| 130 | + graph_options = config_pb2.GraphOptions( |
| 131 | + optimizer_options=config_pb2.OptimizerOptions( |
| 132 | + do_op_fusion=False)) |
| 133 | + config = config_pb2.ConfigProto( |
| 134 | + allow_soft_placement=False, graph_options=graph_options) |
| 135 | + with session.Session(config=config) as sess: |
| 136 | + from tensorflow.python.framework import graph_io |
| 137 | + graph_io.write_graph(sess.graph, './', 'train.pbtxt') |
| 138 | + |
| 139 | + # output the graph_def |
| 140 | + np.random.seed(0) |
| 141 | + feed_data_q = np.random.rand(n_num, q_num, c_num) |
| 142 | + feed_data_k = np.random.rand(n_num, k_num, c_num) |
| 143 | + |
| 144 | + sess.run([init_global, init_local]) |
| 145 | + for step in range(50): |
| 146 | + loss_val_non_fuse, train_op_val = sess.run( |
| 147 | + [loss_op_non_fuse_float32, |
| 148 | + train_op_non_fuse_float32], |
| 149 | + feed_dict={data_float32_q: feed_data_q, |
| 150 | + data_float32_k: feed_data_k}) |
| 151 | + |
| 152 | + print("loss val non-fuse: %2.7f" % (loss_val_non_fuse)) |
| 153 | + return loss_val_non_fuse |
| 154 | + |
| 155 | + |
| 156 | +def runFuse(): |
| 157 | + |
| 158 | + g2 = ops.Graph() |
| 159 | + with g2.as_default(): |
| 160 | + random_seed.set_random_seed(0) |
| 161 | + |
| 162 | + n_num = 1024 |
| 163 | + q_num = 50 |
| 164 | + k_num = 50 |
| 165 | + c_num = 128 # c_num % split_num == 0 |
| 166 | + split_num = 8 |
| 167 | + |
| 168 | + data_float32_q = array_ops.placeholder( |
| 169 | + dtypes.float32, shape=(None, q_num, c_num)) |
| 170 | + data_float32_k = array_ops.placeholder( |
| 171 | + dtypes.float32, shape=(None, k_num, c_num)) |
| 172 | + |
| 173 | + x_float32 = data_float32_q |
| 174 | + y_float32 = data_float32_k |
| 175 | + m = variable_scope.get_variable( |
| 176 | + "m_fuse", [split_num, n_num, q_num, k_num], dtype=dtypes.int32, |
| 177 | + initializer=init_ops.random_uniform_initializer(0, 2)) |
| 178 | + m_bool = math_ops.cast(m, dtype=dtypes.bool) |
| 179 | + m_bool = array_ops.reshape(m_bool, [-1, q_num, k_num]) |
| 180 | + p_float32 = constant_op.constant( |
| 181 | + 0, shape=[split_num*n_num, q_num, k_num], dtype=dtypes.float32) |
| 182 | + |
| 183 | + with ops.name_scope('FuseForward') as scope: |
| 184 | + with ops.device("/cpu:0"): |
| 185 | + |
| 186 | + x_float32 = layers.fully_connected( |
| 187 | + x_float32, c_num, |
| 188 | + activation_fn=nn_ops.leaky_relu, scope="X") |
| 189 | + |
| 190 | + y_float32 = layers.fully_connected( |
| 191 | + y_float32, c_num, |
| 192 | + activation_fn=nn_ops.leaky_relu, scope="Y") |
| 193 | + |
| 194 | + xs_float32 = array_ops.concat( |
| 195 | + array_ops.split(x_float32, split_num, axis=2), axis=0) |
| 196 | + ys_float32 = array_ops.concat( |
| 197 | + array_ops.split(y_float32, split_num, axis=2), axis=0) |
| 198 | + output_fuse_float32 = math_ops.matmul( |
| 199 | + xs_float32, ys_float32, |
| 200 | + transpose_a=False, transpose_b=True) |
| 201 | + |
| 202 | + zero_tensor = array_ops.zeros_like(array_ops.identity(output_fuse_float32)) |
| 203 | + output_fuse_float32 = array_ops.where( |
| 204 | + m_bool, output_fuse_float32, zero_tensor) |
| 205 | + zero_tensor2 = array_ops.zeros_like(zero_tensor) |
| 206 | + |
| 207 | + layer1_fuse_float32 = layers.fully_connected( |
| 208 | + output_fuse_float32, 40, |
| 209 | + activation_fn=nn_ops.leaky_relu) |
| 210 | + layer2_fuse_float32 = layers.fully_connected( |
| 211 | + layer1_fuse_float32, 20, |
| 212 | + activation_fn=nn_ops.leaky_relu) |
| 213 | + layer2_fuse_float32 = array_ops.reshape( |
| 214 | + layer2_fuse_float32, [n_num, -1]) |
| 215 | + layer3_fuse_float32 = layers.fully_connected( |
| 216 | + layer2_fuse_float32, 1, |
| 217 | + activation_fn=nn_ops.leaky_relu) |
| 218 | + labels_fuse_float32 = constant_op.constant( |
| 219 | + 1, shape=[n_num, 1], dtype=dtypes.float32) |
| 220 | + loss_op_fuse_float32 = math_ops.reduce_mean( |
| 221 | + nn_impl.sigmoid_cross_entropy_with_logits( |
| 222 | + logits=layer3_fuse_float32, |
| 223 | + labels=labels_fuse_float32)) |
| 224 | + |
| 225 | + with ops.name_scope('FuseBackward') as scope: |
| 226 | + with ops.device("/cpu:0"): |
| 227 | + train_op_fuse_float32 = adagrad.AdagradOptimizer( |
| 228 | + learning_rate=0.0001, |
| 229 | + initial_accumulator_value=0.1).minimize( |
| 230 | + loss_op_fuse_float32) |
| 231 | + |
| 232 | + init_global = variables.global_variables_initializer() |
| 233 | + init_local = variables.local_variables_initializer() |
| 234 | + |
| 235 | + # trigger fusion op or not |
| 236 | + graph_options = config_pb2.GraphOptions( |
| 237 | + optimizer_options=config_pb2.OptimizerOptions( |
| 238 | + do_op_fusion=True)) |
| 239 | + config = config_pb2.ConfigProto( |
| 240 | + allow_soft_placement=False, graph_options=graph_options) |
| 241 | + with session.Session(config=config) as sess: |
| 242 | + from tensorflow.python.framework import graph_io |
| 243 | + graph_io.write_graph(sess.graph, './', 'train2.pbtxt') |
| 244 | + |
| 245 | + np.random.seed(0) |
| 246 | + feed_data_q = np.random.rand(n_num, q_num, c_num) |
| 247 | + feed_data_k = np.random.rand(n_num, k_num, c_num) |
| 248 | + sess.run([init_global, init_local]) |
| 249 | + |
| 250 | + for step in range(50): |
| 251 | + loss_val_replaced, train_op_val = sess.run( |
| 252 | + [loss_op_fuse_float32, train_op_fuse_float32], |
| 253 | + feed_dict={data_float32_q: feed_data_q, |
| 254 | + data_float32_k: feed_data_k}) |
| 255 | + |
| 256 | + print("loss val fuse: %2.7f" % loss_val_replaced) |
| 257 | + return loss_val_replaced |
| 258 | + |
| 259 | +def runFuseForIntType(): |
| 260 | + graph_options = config_pb2.GraphOptions( |
| 261 | + optimizer_options=config_pb2.OptimizerOptions( |
| 262 | + do_op_fusion=True)) |
| 263 | + config = config_pb2.ConfigProto( |
| 264 | + allow_soft_placement=False, graph_options=graph_options) |
| 265 | + |
| 266 | + with session.Session(config=config) as sess: |
| 267 | + with sess.graph.as_default(): |
| 268 | + |
| 269 | + # with ops.name_scope('FuseForward') as scope: |
| 270 | + t_cond = variables.Variable([[True, True], [False, False]], dtype=dtypes.bool) |
| 271 | + t_then = variables.Variable([[11,12],[13,14]], dtype=dtypes.int32) |
| 272 | + t_else = variables.Variable([[21,22],[23,24]], dtype=dtypes.int32) |
| 273 | + t_out = variables.Variable([[31,32],[33,34]], dtype=dtypes.int32) |
| 274 | + |
| 275 | + t_then = array_ops.zeros_like(array_ops.reshape(array_ops.unique(array_ops.reshape(t_then, [-1]))[0], [-1, 2])) |
| 276 | + t_select = array_ops.where( |
| 277 | + t_cond, t_then, t_else) |
| 278 | + t_result = t_out + t_select |
| 279 | + |
| 280 | + init_global = variables.global_variables_initializer() |
| 281 | + init_local = variables.local_variables_initializer() |
| 282 | + |
| 283 | + from tensorflow.python.framework import graph_io |
| 284 | + graph_io.write_graph(sess.graph, './', 'train_3.pbtxt') |
| 285 | + |
| 286 | + np.random.seed(0) |
| 287 | + feed_p_input = np.random.rand(2, 2) |
| 288 | + sess.run([init_global, init_local]) |
| 289 | + |
| 290 | + result = sess.run([t_result, ]) |
| 291 | + print("result:", result) |
| 292 | + return result |
| 293 | + |
| 294 | +class SelectZeroLikeFusionTest(test.TestCase): |
| 295 | + def testFusion(self): |
| 296 | + res_non_fuse = runNonFuse() |
| 297 | + res_fuse = runFuse() |
| 298 | + self.assertAllCloseAccordingToType(res_non_fuse, res_fuse) |
| 299 | + |
| 300 | + def testFusionForIntType(self): |
| 301 | + result = runFuseForIntType() |
| 302 | + self.assertAllEqual(result, [[[31, 32], [56, 58]]]) |
| 303 | + |
| 304 | +if __name__ == "__main__": |
| 305 | + test.main() |
0 commit comments