diff --git a/README.md b/README.md index 99da6aa..449f080 100644 --- a/README.md +++ b/README.md @@ -1,7 +1,7 @@ [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.7424229.svg)](https://doi.org/10.5281/zenodo.7424229) # pyALiDAn -## Python implementation of the **Atmospheric Lidar Data Augmentation (ALiDAn)** framework & a learning pytorch-based pipeline of lidar analysis. +## Python implementation of the **Atmospheric Lidar Data Augmentation (ALiDAn)** framework & a learning PyTorch-based pipeline of lidar analysis. ALiDAn is an end-to-end physics- and statistics-based simulation framework of lidar measurements [1]. This framework aims to promote the study of dynamic phenomena from lidar measurements and set new benchmarks. The repository also includes a spatiotemporal and synergistic lidar calibration approach [2], which forms a learning pipeline for additional algorithms such as inversion of aerosols, aerosol typing etc. @@ -14,7 +14,7 @@ It will hold the supplemental data and code for the papers [1] and [2]. ### References: -[1] Adi Vainiger, Omer Shubi, Yoav Schechner, Zhenping Yin, Holger Baars, Birgit Heese, Dietrich Althausen, "ALiDAn: Spatiotemporal and Multi--Wavelength Atmospheric Lidar Data Augmentation”, under review, 2022. +[1] Adi Vainiger, Omer Shubi, Yoav Schechner, Zhenping Yin, Holger Baars, Birgit Heese, Dietrich Althausen, "ALiDAn: Spatiotemporal and Multi--Wavelength Atmospheric Lidar Data Augmentation”, IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-17, 2022. [2] Adi Vainiger, Omer Shubi, Yoav Schechner, Zhenping Yin, Holger Baars, Birgit Heese, Dietrich Althausen, "Supervised learning calibration of an atmospheric lidar” IEEE International Geoscience and Remote Sensing Symposium (2022).